
SecureDrop Developer Documentation
Release latest

SecureDrop Team and Contributors

Jun 23, 2025

GETTING STARTED

1 Contributing to SecureDrop 3
1.1 Programmers . 3
1.2 Technical Writers . 4
1.3 UX Contributors . 5
1.4 Translators . 5

2 Setting Up the Development Environment 7
2.1 Overview . 7
2.2 Quick Start . 7
2.3 Setting Up a Multi-Machine Environment . 10

3 Making a PR to SecureDrop 13
3.1 Forking and Cloning the Project . 13
3.2 Make Your Changes and Push to the Fork . 13
3.3 Making a Pull Request to Get Your Changes Merged in develop Branch 14

4 Translations 15
4.1 Quick Start Guide . 15
4.2 Weblate . 18
4.3 How-To Guides . 24

5 Contributing Guidelines 27
5.1 Signing Commits . 27
5.2 Code Review . 27
5.3 Branching Strategy . 27
5.4 Automated Testing . 27
5.5 Code Style . 28
5.6 Type Hints in Python code . 29
5.7 Git History . 30
5.8 Privileges . 30
5.9 Other Tips . 31

6 Tips & Tricks 33
6.1 Using Tor Browser with the Development Environment . 33
6.2 Upgrading or Adding Python Dependencies . 33
6.3 Architecture Diagrams . 34

7 Policy on Supported Languages 37
7.1 Definitions . 37
7.2 Thresholds for Translation and Review Coverage . 37
7.3 Granting Support for a Language . 37

i

7.4 Revoking Support for a Language . 38
7.5 Adding a New Language for Translation . 38
7.6 Technical Limitations . 38

8 Continuous Integration 41
8.1 Basics . 41
8.2 Pull requests . 41
8.3 Special branch prefixes . 41
8.4 Nightlies . 41
8.5 Workstation CI . 42

9 Dependency specification and update policies 43
9.1 Adding a dependency . 43
9.2 Updating dependencies . 43
9.3 Specifying version constraints . 44
9.4 Dependency diff review procedure . 45
9.5 Auditing Rust dependencies . 46

10 Reproducible builds 49
10.1 Goals . 49
10.2 Build environment . 49
10.3 Build metadata . 49
10.4 Reproducible wheels . 49
10.5 Not reproducible . 50
10.6 Tools . 50

11 Journalist Interface API 51
11.1 Versioning . 51
11.2 Content Type . 51
11.3 Authentication . 51
11.4 Errors . 52
11.5 Endpoints . 52
11.6 Removed functionality . 64

12 Development of Securedrop-Admin in the Admin Directory 65

13 Development of SecureDropUpdater in the journalist_gui Directory 67
13.1 Installing the Dependencies in a Virtual Environment . 67
13.2 To Update the UI Design . 67
13.3 Using Resources in the UI . 68
13.4 Adding and Running Test Cases . 68

14 Virtual Environments: Servers 69
14.1 Staging . 69
14.2 Production . 71

15 Virtual Environments: Admin Workstation 75
15.1 Linux . 75

16 Virtual Environments: Using Qubes 77
16.1 Overview . 77
16.2 Download Ubuntu server ISO . 77
16.3 Create the base VM . 77
16.4 Boot into installation media . 78
16.5 Initial VM configuration . 78

ii

16.6 Clone VMs . 79
16.7 SecureDrop Installation . 80
16.8 Managing Qubes RPC for Admin API capability . 80
16.9 Creating staging instance . 81
16.10 Accessing the Journalist Interface (Staging) in Whonix-based VMs 81

17 Upgrade Testing using Molecule 83
17.1 Upgrade testing using locally-built packages . 83
17.2 Upgrade testing using apt-test.freedom.press . 84

18 Database Migrations 85
18.1 Migration Files . 85
18.2 Deployment . 85
18.3 Developer Workflow . 85

19 Internationalization (i18n) 89
19.1 What languages are available where? . 90
19.2 Development tasks . 90
19.3 Release Management . 92
19.4 Weblate administration . 93

20 Documentation Guidelines 95
20.1 Documentation versions . 95
20.2 Updating Documentation . 95
20.3 Testing Documentation Changes . 96
20.4 Pushing to a contributor fork . 96
20.5 Updating Screenshots . 96
20.6 Updating Upgrade Guides . 97
20.7 Style Guide . 97

21 Testing SecureDrop 101

22 Testing: Application Tests 103
22.1 Running the Application Tests . 103
22.2 Updating the Application Tests . 103

23 Testing: Configuration Tests 105
23.1 Installation . 105
23.2 Running the Config Tests . 105
23.3 Updating the Config Tests . 105
23.4 Config Test Layout . 106
23.5 Running the CI Staging Environment . 106

24 demo.securedrop.org 109
24.1 How it works . 109
24.2 Containers . 109
24.3 Troubleshooting . 109

25 Package repositories 111
25.1 Test repositories . 111
25.2 QA repositories . 111
25.3 Production repositories . 112
25.4 How it works technically . 112

26 Debian packages 113
26.1 About dbgsym packages . 113

iii

27 Updating OSSEC Rules 115
27.1 Alerting Strategy . 115
27.2 Using ossec-logtest . 115
27.3 Writing Automated Tests for OSSEC Rules . 116
27.4 Adding new OSSEC rules . 116
27.5 Deployment . 118

28 Generating AppArmor Profiles for Tor and Apache 119

29 Portable SecureDrop Demo 121
29.1 Hardware . 121

30 Release Management 123
30.1 Pre-Release . 123
30.2 Release Process . 126
30.3 Post-Release . 127
30.4 Releases that only modify code on Tails workstations . 128

31 Build metadata 129
31.1 Build logs . 129
31.2 buildinfo . 129

32 Linux kernel maintenance 131
32.1 Testing a new kernel manually . 131

33 Rust toolchain maintenance 133
33.1 Upgrading the toolchain . 133

34 Updating Tor 135
34.1 Identifying new releases . 135
34.2 Testing . 135
34.3 Promoting . 135

35 Setting up the SecureDrop Workstation 137
35.1 Install Qubes . 137
35.2 Development Environment . 138
35.3 Staging Environment . 140

36 SecureDrop Workstation Development 143
36.1 Testing . 143
36.2 Automatic updates . 144
36.3 Manually updating dom0 code . 144
36.4 Building workstation Debian packages . 144
36.5 Building workstation RPM packages . 144

37 SecureDrop Workstation Release Management 145

38 Release a Debian package 147
38.1 Step 0: Tracking issue . 147
38.2 Step 1: Create a release candidate (RC) tag . 147
38.3 Step 2: Build and deploy the package to apt-test . 147
38.4 Step 3: Begin QA . 148
38.5 Step 4: Create a release tag . 148
38.6 Step 5: Build and deploy the packages to apt-qa . 148
38.7 Step 6: Perform the apt-qa preflight check . 148
38.8 Step 7: Deploy the package to apt-prod . 149

iv

39 Release an RPM package 151
39.1 Release securedrop-workstation-dom0-config . 151

40 Signing procedures 153
40.1 Sign the tag with the SecureDrop release key . 153
40.2 Regenerate and sign the apt release file . 153
40.3 Sign the RPM package . 154

41 Post-Release tasks 155

42 SecureDrop Client Development 157
42.1 Developer Setup . 157
42.2 How to Find Help . 157
42.3 Client Architecture . 157
42.4 Client Database Structure . 158
42.5 Tests . 160
42.6 Contributing . 160

Index 161

v

vi

SecureDrop Developer Documentation, Release latest

This documentation is intended for contributors to the SecureDrop project. If you are looking for information on how
to install, use or maintain SecureDrop, please see our documentation for sources, journalists and administrators.

GETTING STARTED 1

https://docs.securedrop.org/

SecureDrop Developer Documentation, Release latest

2 GETTING STARTED

CHAPTER

ONE

CONTRIBUTING TO SECUREDROP

Thank you for your interest in contributing to SecureDrop! We welcome both new and experienced open-source con-
tributors and are committed to making it as easy as possible to contribute. Whether you have a few minutes or many
hours, there are a variety of ways to help. We are always looking for help from:

• Programmers, to help us develop SecureDrop;

• Technical writers, to help improve the documentation;

• UX contributors, to help improve the product experience for end users; and

• Translators, to translate SecureDrop.

You can always find a regular project contributor to answer any questions you may have on the SecureDrop instant
messaging channel.

Note

The SecureDrop GitHub repositories and other project resources are managed by Freedom of the Press Foundation
employees. All SecureDrop contributors are required to abide by the project’s Code of Conduct.

• To start contributing to the codebase, see our contributing guidelines.

• To start making documentation changes, see our documentation guidelines.

• To start translating, see our translator guide.

• Not sure where to start? You can always ask for advice in the chat room.

1.1 Programmers

1.1.1 SecureDrop Workstation, Client, and supporting applications
The SecureDrop Workstation is a mixture of Python scripts and Salt configuration-as-code. See SecureDrop Client
Development for more information.

The graphical SecureDrop Client app is written in Python, using the Qt GUI framework, and includes other supporting
apps (Python/Rust), services (systemd), and packages (Debian). See SecureDrop Workstation Development for more
information.

The “good first issue” tag is a good introduction to work available in both the Workstation and Client repositories.

3

https://gitter.im/freedomofpress/securedrop
https://gitter.im/freedomofpress/securedrop
https://freedom.press/about/staff
https://freedom.press/about/staff
https://github.com/freedomofpress/.github/blob/main/CODE_OF_CONDUCT.md
https://github.com/freedomofpress
https://gitter.im/freedomofpress/securedrop
https://github.com/freedomofpress/securedrop-workstation/
https://github.com/freedomofpress/securedrop-client/
https://github.com/freedomofpress/securedrop-workstation/labels/good%20first%20issue
https://github.com/freedomofpress/securedrop-client/labels/good%20first%20issue

SecureDrop Developer Documentation, Release latest

1.1.2 SecureDrop Server
The SecureDrop system includes Flask-based web applications for sources and journalists. It is deployed across mul-
tiple machines with Ansible. Most of SecureDrop’s code is written in Python.

The “good first issue” tag is a good introduction to work available in the SecureDrop Server.

Programmers who are more comfortable with contributing to the SecureDrop codebase can work on issues related to
the following topics:

Application development and general tasks:

• Application code cleanup

• Developer workflow

• Needs/Research

• Source and journalist applications

• Journalist experience

• Source experience

• Tests

Infrastructure focus:

• Continuous Integration

• Ansible logic/installation

• Operations and deployment

Security focus:

• IDS noise

• OSSEC

• Security

1.1.3 Preparing and submitting changes
Before beginning your work on any given issue, we recommend asking questions or sharing an implementation proposal
on the relevant GitHub issue. Alternatively, you can often find the development team on Gitter chat. Communicating
early and often is especially important for larger changes.

When you’re ready to share your work with the SecureDrop team for review, submit a pull request with the proposed
changes. Tests will run automatically on GitHub.

If you would like to contribute on a regular basis, you’ll want to read the developer documentation and set up a local
development environment to preview changes, run tests locally, etc.

1.2 Technical Writers
Technical writers and editors are invited to review the documentation and fix any mistakes in accordance with the
documentation guidelines. Our documentation code is located in our documentation repository.

If this is your first time contributing to SecureDrop documentation, consider working on low-hanging fruit to become
familiar with the process.

If you would like to contribute to copywriting user-facing text in the SecureDrop UI, see these issues in our separate
User Experience repo.

4 Chapter 1. Contributing to SecureDrop

https://flask.palletsprojects.com/
https://github.com/ansible/ansible
https://github.com/freedomofpress/securedrop/search?l=python
https://github.com/freedomofpress/securedrop/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+app+code+cleanup%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+improve+developer+workflow%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3Aneeds%2Fresearch+
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3Aapp
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+journalist+experience%22
https://github.com/freedomofpress/securedrop/labels/goals%3A%20improve%20source%20experience
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+more+tests%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+sick+CI%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+Improve+Ansible+logic+%2F+smoother+install%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3Aops%2Fdeployment
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3A%22goals%3A+reduce+IDS+noise%22
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3AOSSEC
https://github.com/freedomofpress/securedrop/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-desc+label%3Asecurity
https://gitter.im/freedomofpress/securedrop
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests
https://docs.securedrop.org/
https://github.com/freedomofpress/securedrop-docs
https://github.com/freedomofpress/securedrop-ux/labels/NeedsCopywriting
https://github.com/freedomofpress/securedrop-ux/
https://github.com/freedomofpress/securedrop-ux/

SecureDrop Developer Documentation, Release latest

1.3 UX Contributors
If you have interaction or visual design skills, UI copywriting skills, or user research skills, check out our User Expe-
rience repository. It includes a wiki with notes from UX meetings, design standards, design principles, links to past
research synthesis efforts, and ongoing and past work documented in the form of issues.

If you have front-end development skills, take a look at these issues in the primary SecureDrop repository in GitHub:

• All issues labeled “UX”

• CSS/SASS and HTML

• All issues labeled “Journalist Experience”

1.4 Translators
Translating SecureDrop is crucial to making it useful for investigative journalism around the world. If you know English
and another language, we would welcome your help.

SecureDrop is translated using Weblate. We provide a detailed guide for translators, and feel free to contact us in our
Gitter chat room or through Localization Lab communications platforms.

1.3. UX Contributors 5

https://github.com/freedomofpress/securedrop-ux/
https://github.com/freedomofpress/securedrop-ux/
https://github.com/freedomofpress/securedrop/issues?q=is%3Aopen+is%3Aissue+label%3AUX
https://github.com/freedomofpress/securedrop/issues?q=is%3Aopen+is%3Aissue+label%3ACSS%2FSASS
https://github.com/freedomofpress/securedrop/issues?utf8=%E2%9C%93&q=is%3Aopen+is%3Aissue+label%3AHTML
https://github.com/freedomofpress/securedrop/issues?q=is%3Aopen+is%3Aissue+label%3A%22goals%3A+journalist+experience%22
https://weblate.securedrop.org/
https://gitter.im/freedomofpress/securedrop

SecureDrop Developer Documentation, Release latest

6 Chapter 1. Contributing to SecureDrop

CHAPTER

TWO

SETTING UP THE DEVELOPMENT ENVIRONMENT

2.1 Overview
SecureDrop is a multi-machine design. To make development and testing easier, we provide a set of virtual environ-
ments, each tailored for a specific type of development task. We use Ansible playbooks to provision these environments
on either virtual machines or physical hardware. We use Libvirt to manage our virtual machines, Docker to run them,
and Molecule to test the provisioning logic.

2.2 Quick Start
The Docker based environment is suitable for developing the web application and updating the documentation.

Follow the instructions below to install the requirements for the Docker-based environment for your operating system.

2.2.1 Ubuntu or Debian GNU/Linux
Run the following commands to update the package index and to install the necessary development tools:

sudo apt-get update
sudo apt-get install -y git jq make

We recommend using the stable version of Docker CE (Community Edition) which can be installed via the official
documentation links:

• Docker CE for Ubuntu

• Docker CE for Debian

Make sure to follow the post-installation steps for Linux.

Experimental support for using Podman is available, set the USE_PODMAN=1 environment variable to enable it.

2.2.2 Fedora Linux
Run the following command to update the package index and to install Git and make:

sudo dnf install -y make git

We recommend using the stable version of Docker CE (Community Edition) which can be installed via the official
documentation link:

• Docker CE for Fedora

Make sure to follow the post-installation steps for Linux.

Experimental support for using Podman is available, set the USE_PODMAN=1 environment variable to enable it.

7

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/debian/
https://docs.docker.com/engine/install/linux-postinstall/
https://podman.io/
https://docs.docker.com/engine/install/fedora/
https://docs.docker.com/engine/install/linux-postinstall/
https://podman.io/

SecureDrop Developer Documentation, Release latest

2.2.3 macOS
Install Docker.

2.2.4 Qubes
Create a StandaloneVM based on Debian 12, called sd-dev. You can use the Q menu to configure a new VM, or run
the following in dom0:

qvm-clone --class StandaloneVM debian-12-xfce sd-dev
qvm-start sd-dev
qvm-sync-appmenus sd-dev

The commands above create a new StandaloneVM, boot it, and then update the Qubes menus with applications within
that VM. Open a terminal in sd-dev, and proceed with installing Docker CE for Debian.

Tip

If you experience an error with the aufs-dkms dependency when installing Docker CE, you can safely skip that
package using the --no-install-recommends argument for apt.

2.2.5 Fork & Clone the Repository
Now you are ready to get your own copy of the source code. Visit our repository, fork it, and clone it on your local
machine.

git clone git@github.com:<your_github_username>/securedrop.git

Note

Pull requests should be opened against the develop branch of our repository, which is the primary branch used for
development.

2.2.6 Using the Docker Environment
The Docker based helpers are intended for rapid development on the SecureDrop web application and documentation.
They use Docker images that contain all the dependencies required to run the tests, a demo server etc.

Tip

When run for the first time, building Docker images will take a few minutes, even one hour when your Internet
connection is not fast. If you are unsure about what happens, you can get a more verbose output by setting the
environment variable export DOCKER_BUILD_VERBOSE=true.

The SecureDrop repository is bind mounted into the container and files modified in the container are also modified in
the repository. This container has no security hardening or monitoring.

To get started, you can try the following:

cd securedrop
make dev # run development servers
make dev-tor # run development servers (onion␣

(continues on next page)

8 Chapter 2. Setting Up the Development Environment

https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://docs.docker.com/engine/install/debian/
https://github.com/freedomofpress/securedrop
https://github.com/freedomofpress/securedrop

SecureDrop Developer Documentation, Release latest

(continued from previous page)

→˓addresses)
make test # run tests
securedrop/bin/dev-shell bin/run-test tests/functional # functional tests only
securedrop/bin/dev-shell bash # shell inside the container

Tip

The interactive shell in the container does not run redis, Xvfb etc. However you can import shell helper functions
with source bin/dev-deps and call run_xvfb, maybe_create_config_py etc.

SecureDrop consists of two separate web applications (the Source Interface and the Journalist Interface) that run
concurrently. In the development environment they are configured to detect code changes and automatically reload
whenever a file is saved. They are made available on your host machine by forwarding the following ports:

• Source Interface: localhost:8080

• Journalist Interface: localhost:8081

You should use Tor Browser to test web application changes, see here for instructions.

A test administrator (journalist) and non-admin user (dellsberg) are created by default when running make dev.
In addition, sources and submissions are present. The test users have the following credentials. Note that the password
and TOTP secret are the same for both accounts for convenience during development.

• Username: journalist or dellsberg

• Password: correct horse battery staple profanity oil chewy

• TOTP secret: JHCO GO7V CER3 EJ4L

If you need to generate the six digit two-factor code, use the TOTP secret in combination with an authenticator ap-
plication that implements RFC 6238, such as FreeOTP (Android and iOS) or oathtool (command line tool, multiple
platforms). Instead of typing the TOTP code, you can simply scan the following QR code:

2.2. Quick Start 9

http://localhost:8080
http://localhost:8081
https://tools.ietf.org/html/rfc6238
https://freeotp.github.io/
https://www.nongnu.org/oath-toolkit/oathtool.1.html

SecureDrop Developer Documentation, Release latest

You can also generate the two-factor code using the Python interpreter:

>>> import pyotp
>>> pyotp.TOTP('JHCOGO7VCER3EJ4L').now()
u'422038'

Persistent storage

By default the development environment doesn’t store any state once shut down.

If you set the USE_PERSISTENT_STORE=true environment variable, it will create a persistent sd-store volume and
use whatever is stored in that. This is especially useful if you want to test against a large number of sources that take a
while to initially generate.

You should be able to export, import, and delete the volume using the standard Docker/Podman commands.

2.3 Setting Up a Multi-Machine Environment

Note

You do not need this step if you only plan to work on the web application or the documentation.

10 Chapter 2. Setting Up the Development Environment

SecureDrop Developer Documentation, Release latest

To get started, you will need to install Vagrant, Libvirt, Docker, and Ansible on your development workstation.

2.3.1 Ubuntu or Debian GNU/Linux

Note

Tested on: Debian GNU/Linux 10 Buster

sudo apt-get update
sudo apt-get install -y build-essential libssl-dev libffi-dev python3-dev \

dpkg-dev git linux-headers-$(uname -r)

We recommend using the most recent version of Vagrant available in your distro’s package repositories. For Debian
Stable, that’s 2.2.3 at the time of this writing. Older versions of Vagrant has been known to cause problems (GitHub
#932, GitHub #1381). If apt-cache policy vagrant says your candidate version is not at least 1.8.5, you should
download the current version from the Vagrant Downloads page and then install it.

If your OS vagrant is recent enough
sudo apt-get install vagrant
OR this, if you downloaded the deb package.
sudo dpkg -i vagrant.deb

Warning

We do not recommend installing vagrant-cachier. It destroys apt’s state unless the VMs are always shut
down/rebooted with Vagrant, which conflicts with the tasks in the Ansible playbooks. The instructions in Va-
grantfile that would enable vagrant-cachier are currently commented out.

Finally, install Ansible so it can be used with Vagrant to automatically provision VMs. We recommend installing
Ansible from PyPi with pip to ensure you have the latest stable version.

sudo apt-get install python3-pip

The version of Ansible recommended to provision SecureDrop VMs may not be the same as the version in your distro’s
repos, or may at some point flux out of sync. For this reason, and also just as a good general development practice,
we recommend using a Python virtual environment to install Ansible and other development-related tooling. Using
virtualenvwrapper:

sudo apt-get install virtualenvwrapper
source /usr/share/virtualenvwrapper/virtualenvwrapper.sh
mkvirtualenv -p /usr/bin/python3 securedrop

Note

You’ll want to add the command to source virtualenvwrapper.sh to your ~/.bashrc (or whatever your de-
fault shell configuration file is) so that the command-line utilities virtualenvwrapper provides are automatically
available in the future.

2.3. Setting Up a Multi-Machine Environment 11

https://github.com/freedomofpress/securedrop/pull/932
https://github.com/freedomofpress/securedrop/pull/932
https://github.com/freedomofpress/securedrop/issues/1381
https://www.vagrantup.com/downloads
https://virtualenvwrapper.readthedocs.io/en/stable/

SecureDrop Developer Documentation, Release latest

2.3.2 macOS
Developers on macOS should use the Docker-based container environment. We don’t support running VMs on macOS.

2.3.3 Fork & Clone the Repository
Now you are ready to get your own copy of the source code. Visit our repository fork it and clone it on you local
machine:

git clone git@github.com:<your_github_username>/securedrop.git

2.3.4 Install Python Requirements
SecureDrop uses many third-party open source packages from the Python community. Ensure your virtualenv is acti-
vated and install the packages.

pip install --no-deps --require-hashes -r securedrop/requirements/python3/develop-
→˓requirements.txt

Note

You will need to run this everytime new packages are added.

2.3.5 Qubes
To configure a multi-machine environment in Qubes, follow the Quick Start instructions above to create a standalone
VM named sd-dev, then follow the Linux instructions above to install the required packages.

Then, complete the steps described in Virtual Environments: Using Qubes.

12 Chapter 2. Setting Up the Development Environment

https://github.com/freedomofpress/securedrop

CHAPTER

THREE

MAKING A PR TO SECUREDROP

3.1 Forking and Cloning the Project
1. Fork SecureDrop on GitHub from the Main Repository to your own profile.

2. Clone the forked repository.

git clone https://github.com/<your-username>/securedrop.git
cd securedrop

3. Add the Main Repository as an upstream remote.

git remote add upstream https://github.com/freedomofpress/securedrop.git

3.2 Make Your Changes and Push to the Fork

3.2.1 Create a Branch
Create a branch on which you make your changes.

git checkout -B change-one

3.2.2 Make Your Changes and Commit
Now enter the directory of your fork amd make changes as you wish. Run tests for the changes you have made.

If you create a new file, remember to add it with git add.

git add <new-file>

Commit your changes, adding a description of what was added. If you’re not used to Git, the simplest way is to commit
all modified files and add a description message of your changes in a single command like this:

git commit -a -m "<Description of changes made>"

3.2.3 Pull the Upstream Changes
We get any updates made in the upstream repository.

git pull upstream develop

13

SecureDrop Developer Documentation, Release latest

3.2.4 Rebasing
Rebasing is the process of moving or combining a sequence of commits to a new base commit. Rebasing is most useful
and easily visualized in the context of a feature branching workflow.

Assume the following history exists:

A---B---C change-one
/

D---E---F---G develop

From this point, the result of either of the following commands:

git rebase develop
git rebase develop change-one

would be:

A`--B`--C` change-one
/

D---E---F---G develop

Note

A and A represents the same set of changes, but have different committer information.

3.2.5 Pushing the Changes to GitHub Fork
Once your changes are committed and rebased, push the changes to your GitHub fork.

git push origin <branch-name>

3.3 Making a Pull Request to Get Your Changes Merged in develop
Branch

1. Through GitHub make a pull request from the branch that you commited your code to.

2. Once PR is made, the Circle CI build server checks all tests and Codecov runs a report on test coverage. The reports
are available in the PR page and also emailed to admins.

3. From there, a maintainer will accept your PR or they may request comments for you to address prior to merge. The
maintainer may also ask you to squash your commits prior to merge.

14 Chapter 3. Making a PR to SecureDrop

https://thoughtbot.com/blog/git-interactive-rebase-squash-amend-rewriting-history

CHAPTER

FOUR

TRANSLATIONS

4.1 Quick Start Guide
SecureDrop is a system that lets people share sensitive information with investigative journalists anonymously and
securely. Learn more about SecureDrop.

The SecureDrop Client is a component of the SecureDrop Workstation, a new tool to enable journalists to communicate
with anonymous sources and manage submitted documents via their SecureDrop, while providing mitigations against
malware and other security risks. The Workstation and its components, including the Client, are currently in a limited
beta phase.

Both SecureDrop and the SecureDrop Client are written in English and translated into multiple other languages. Trans-
lations are managed using Weblate, a web platform that enables collaborative translation projects.

4.1.1 Getting help
If you’re interested in helping with translation and have questions about anything in this document, here’s how to ask
for help:

• Chat in the SecureDrop instant messaging channel

– Localization Lab, with whom we coordinate SecureDrop’s translation, also maintains their own channel,
hosted by the Internet Freedom Festival.

• Read the Weblate documentation

4.1.2 How is SecureDrop translated?
SecureDrop is translated using the Weblate platform.

Sources, journalists and admins use localized versions of SecureDrop. A malicious actor could attempt to modify
their behavior by creating misleading translations. In order to mitigate that risk, all translations must be reviewed and
accepted by designated reviewers before they become part of SecureDrop.

4.1.3 When does SecureDrop’s translation happen?
All of SecureDrop’s components can be translated continuously, as new code and source strings are merged into the
project. Translations are then finalized during the release process.

This process is coordinated in collaboration with Localization Lab. You can watch for the announcements published
in multiple locations.

15

https://docs.securedrop.org/en/stable/what_is_securedrop.html
https://workstation.securedrop.org
https://gitter.im/freedomofpress/securedrop
https://www.localizationlab.org/
https://community.internetfreedomfestival.org/community/channels/localization-lab-chat
https://docs.weblate.org/
https://www.localizationlab.org/

SecureDrop Developer Documentation, Release latest

4.1.4 Workflow Diagram

Fig. 1: A workflow diagram showing the continuous translations process.

4.1.5 Translation Responsibilities
1. Developers must use make extract-strings to keep the catalog template up to date with changes they’ve

made to UI strings in the Python source code. Developers are encouraged to commit make extract-strings
changes along with the source-code changes that caused them, for a cleaner Git history to review and (if neces-
sary) blame and revert.

• CI will enforce this requirement via make check-strings on branches pushed to this repository. Like
the other linters, this check must pass for a pull request to be approved for merge into main.

• Developers can run make check-strings locally.

2. Maintainers should keep in mind that pull requests they review will include changes to the catalog template
for any strings changed in the source code. They should consider the impact and timing of these changes on
translators—just as they consider the impact and timing of code changes on other developers—as part of their
review of a pull request prior to approving it for merge into main and thereby into Weblate.

3. Translators can always see the latest strings available to translate in weblate. They can translate new and changed
strings continuously, as development progresses, and they can give feedback on strings well in advance of the
release period.

4. Release and localization managers do not need to do anything special outside of preflight testing! As sum-
marized above, developers are responsible for keeping strings up to date; Weblate is responsible for keeping the

16 Chapter 4. Translations

https://weblate.org/

SecureDrop Developer Documentation, Release latest

per-language editable .po catalogs and loadable .mo machine objects up to date.

4.1.6 Tutorial for Developers
Let’s say you’ve made the following string change in the Client’s Python source code:

$ git diff
diff --git a/securedrop_client/app.py b/securedrop_client/app.py
index 6b95eda..13ee15d 100644
--- a/securedrop_client/app.py
+++ b/securedrop_client/app.py
@@ -175,7 +175,7 @@ def prevent_second_instance(app: QApplication, unique_name: str) ->␣
→˓None:

if e.errno == ALREADY_BOUND_ERRNO:
err_dialog = QMessageBox()
err_dialog.setText(

- _("{application_name} is already running").format(
+ _("{application_name} is already running!").format(

application_name=app.applicationName()
)

)

When you commit and push this change, you’ll receive the following error in CI:

writing PO template file to securedrop_client/locale/messages.pot
Translation catalog is out of date. Please run "make extract-strings" and commit the␣
→˓changes.
make: *** [check-strings] Error 1

As prompted, run make extract-strings and commit and push the changes:

$ make extract-strings
[...]
writing PO template file to securedrop_client/locale/messages.pot
$ git diff
diff --git a/securedrop_client/app.py b/securedrop_client/app.py
index 6b95eda..13ee15d 100644
--- a/securedrop_client/app.py
+++ b/securedrop_client/app.py
@@ -175,7 +175,7 @@ def prevent_second_instance(app: QApplication, unique_name: str) ->␣
→˓None:

if e.errno == ALREADY_BOUND_ERRNO:
err_dialog = QMessageBox()
err_dialog.setText(

- _("{application_name} is already running").format(
+ _("{application_name} is already running!").format(

application_name=app.applicationName()
)

)
diff --git a/securedrop_client/locale/messages.pot b/securedrop_client/locale/messages.
→˓pot
index 51c95cc..524cdde 100644
--- a/securedrop_client/locale/messages.pot
+++ b/securedrop_client/locale/messages.pot

(continues on next page)

4.1. Quick Start Guide 17

SecureDrop Developer Documentation, Release latest

(continued from previous page)

@@ -16,7 +16,7 @@ msgstr ""
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.9.1\n"

-msgid "{application_name} is already running"
+msgid "{application_name} is already running!"
msgstr ""

msgid "The SecureDrop server cannot be reached. Trying to reconnect..."
$ git commit --all --message "changes a string"
[i18n 3637b3d] changes a string
2 files changed, 2 insertions(+), 2 deletions(-)

When you open a pull request for your branch, a maintainer will review your string changes for their translation impact.

4.2 Weblate

4.2.1 Get started using Weblate
You can choose to register on Weblate with your email address, or by linking a GitHub account.

You can contribute to any language, and Weblate has some conveniences to make it easier to work with your preferred
languages. Learn how to choose your preferred languages on Weblate.

Our Weblate instance only contains one project, SecureDrop, which has four translation components:

1. SecureDrop: The main SecureDrop web application.

2. desktop: The translations for the desktop icons of the admin and journalist workstations used by news organi-
zations.

3. SecureDrop Glossary: Weblate’s internal glossary for SecureDrop terms.

4. SecureDrop Client: The SecureDrop Client interface of the SecureDrop Workstation.

Fig. 2: Components of the SecureDrop project in Weblate. Click on the image to see it full-size.

Once a string is translated, it must be approved by a reviewer before being accepted into SecureDrop.

Approved strings can only be modified by reviewers. However, translators can still suggest modifications and make
comments if they notice something wrong. SecureDrop translations are a collaborative endeavour!

18 Chapter 4. Translations

https://workstation.securedrop.org

SecureDrop Developer Documentation, Release latest

Learn how to translate SecureDrop using Weblate.

4.2.2 How to register an account on Weblate using an email address
1. Visit the Weblate registration page.

2. Fill the form Register using email and click Register.

3. Check your email for a message from weblate@securedrop.org with the subject [Weblate] Your registration
on Weblate.

4. That message contains a confirmation link. Click that link to complete your registration.

Fig. 3: Weblate registration page. Click on the image to see it full-size.

4.2.3 How to register an account on Weblate using a GitHub account
1. Visit the Weblate registration page.

2. Click on the GitHub icon, under Third party registration.

3. Log into GitHub if necessary.

4. Click the green Authorize freedomofpress button.

The authorization request looks like this:

4.2.4 How to manage your preferred languages on Weblate
1. Visit the Weblate dashboard.

2. Click the Manage your languages button.

3. Select the languages your want to translate.

4. Click the Save button.

4.2. Weblate 19

https://weblate.securedrop.org/accounts/register/
https://weblate.securedrop.org/accounts/register/
https://weblate.securedrop.org/

SecureDrop Developer Documentation, Release latest

Fig. 4: GitHub authorization request. Click on the image to see it full-size.

20 Chapter 4. Translations

SecureDrop Developer Documentation, Release latest

Fig. 5: Language preferences in Weblate. Click on the image to see it full-size.

4.2. Weblate 21

SecureDrop Developer Documentation, Release latest

4.2.5 How to translate a language on Weblate
1. Visit the Weblate dashboard.

2. Click on the component in order to display the list of languages in which it is translated.

3. Click the Translate button.

4. Start translating.

Fig. 6: List of available languages in Weblate. Click on the image to see it full-size.

4.2.6 How to translate a phrase on Weblate
1. Select a language.

2. Read the translatable string in the text area labelled Source.

3. Review the suggested translations if there are any in the Glossary sidebar.

4. Review the contextual information about the source string in the Source information sidebar, like its location
in our source code.

5. If a screenshot of the SecureDrop user interface is available, read the source string in context.

• For SecureDrop, you can also use SecureDrop’s demo server to preview the source string in context.

• For the (beta) SecureDrop Client, consult the screenshots published with the SecureDrop Workstation doc-
umentation. Feel free to contact the SecureDrop team with any questions or feedback.

6. Input your translation in the Translation test area near the source string.

7. Click Save. The next untranslated string will appear automatically.

• Learn more about translating phrases with placeholders

• Learn more about translating phrases with HTML code

• Learn more about using language glossaries on Weblate

• Learn more about using SecureDrop’s demo server

22 Chapter 4. Translations

https://weblate.securedrop.org/
https://demo.securedrop.org
https://workstation.securedrop.org
https://workstation.securedrop.org

SecureDrop Developer Documentation, Release latest

Fig. 7: Translating a phrase in Weblate. Click on the image to see it full-size.

4.2.7 How to use the language glossaries on Weblate
Weblate contains an internal glossary for each language, to which we can add suggested translations. If a source string
contains terms from this glossary, the glossary entries will be displayed in a box on the right side of the translation
page.

Fig. 8: Glossary sidebar in Weblate. Click on the image to see it full-size.

If you find that a source string contains terms from the SecureDrop glossary or the EFF Surveillance Self-Defense
glossary, but the glossary sidebar says No related strings found in the glossary., we’d really appreciate it
if you could add those terms to the glossary of the language you’re working with.

4.2.8 Glossary
Weblate contains an internal glossary for each language, to which we can add suggested translations. Learn more about
using language glossaries on Weblate.

If a term is missing from the glossary for the language you’re translating into, you can refer to the following technical
glossaries for additional context. Then you can contribute to improving your own language glossary on Weblate by
suggesting a translation yourself!

• The SecureDrop glossary explains terms specific to SecureDrop

• The EFF Surveillance Self-Defense glossary explains many general security concepts

4.2. Weblate 23

https://docs.securedrop.org/en/stable/glossary.html
https://ssd.eff.org/en/glossary/
https://ssd.eff.org/en/glossary/
https://docs.securedrop.org/en/stable/glossary.html
https://ssd.eff.org/en/glossary/

SecureDrop Developer Documentation, Release latest

Fig. 9: A language glossary in Weblate. Click on the image to see it full-size.

Additionally, here is a list of terms that are specific to the usage of Weblate for SecureDrop.

Reviewer

Reviewers are people who are trusted to review and accept new translations into SecureDrop. Learn how to become a
reviewer.

Source string

On Weblate, the phrases being translated are called source strings. (No relation with the terms source and journalist
in SecureDrop.)

Source strings are English phrases and are automatically extracted from SecureDrop’s code. Because of that, they can
only be modified by developers outside Weblate. Learn how to suggest changes to a source string.

4.3 How-To Guides

4.3.1 How to suggest changes to a source string
If you notice errors in our source strings, or catch us using English idioms that are hard to translate, please add comments
letting us know. We appreciate your feedback very much and our release schedule includes a few days at the beginning
of every translation cycle for incorporating it.

4.3.2 How to use SecureDrop’s demo server
The demo server always showcases the latest release candidate of SecureDrop.

Unlike a real SecureDrop instance, you can access the demo server using any web browser.

You can use it to review new source strings in the context in which either a source, or a journalist would read them.
Those two experiences are called the Source Interface and the Journalist Interface.

In order to review the demo server as a source:

24 Chapter 4. Translations

SecureDrop Developer Documentation, Release latest

1. Visit SecureDrop’s demo server.

2. Click on the “Source Interface” link.

In order to review the demo server as a journalist:

1. Visit SecureDrop’s demo server.

2. Take note of the username, passphrase and current TOTP token at the bottom of the page; you will need them
to log in.

3. Click on the “Journalist Interface” link.

4. Input the username, passphrase and current TOTP token (“Two-factor Code”) to log in.

4.3.3 How to become a reviewer
Contact Localization Lab to ask to join a language team as a reviewer.

4.3.4 How to add a new language to SecureDrop
We love seeing SecureDrop translated into new languages. Contact Localization Lab to ask to join a language team (or
start a new one) and have the new language added to Weblate.

However, SecureDrop only supports a subset of all the languages being worked on in Weblate. New languages are
supported according to the Policy on Supported Languages.

4.3.5 How to change an existing translation
If you think a translation can be improved, please don’t run roughshod over another translator’s work. Make a suggestion
or comment first, to allow for discussion before saving your changes.

Exceptions to this policy would be:

• Obvious errors in spelling, grammar, or punctuation

• A string in our interface that is supposed to match another project. For example, we include instructions for
adjusting Tor Browser settings, so if our wording is out of date, it has to be corrected to reduce confusion for
people using SecureDrop.

In those cases, please feel free to correct the existing translation.

4.3.6 How to translate a phrase with placeholders
Source strings may contain placeholder text in curly braces, for example {count}. These represent variable content
(like a username, as in the example below), and must be left unmodified, but they can be moved around in a string. For
instance:

Edit user {user}

might be displayed to the user as:

Edit user Jean-Claude

The French translated string should look like:

Modifier l'utilisateur {user}

And it would be incorrect to translate the placeholder like so:

4.3. How-To Guides 25

https://demo.securedrop.org
https://demo.securedrop.org
https://wiki.localizationlab.org/index.php/Communication_Platforms
https://wiki.localizationlab.org/index.php/Category:Language_Teams
https://wiki.localizationlab.org/index.php/Communication_Platforms
https://wiki.localizationlab.org/index.php/Category:Language_Teams
https://weblate.org/

SecureDrop Developer Documentation, Release latest

Modifier l'utilisateur {utilisateur}

4.3.7 How to translate a phrase with HTML code
Some source strings represent HTML that will be presented in the SecureDrop web interface.

HTML elements (embraced by in <, >, example:) can contain multiple so-called attributes.

The text of the two attributes called alt and title should be translated. The text of the other attributes should not be
translated.

Attribute alt

Image elements () in HTML place a picture on the page. Because people with visual impairments rely on a
special note on the image element – the alt attribute – to describe the image, it is necessary to translate those. Here’s
an example that contains an image with both an alt attribute and a placeholder:

As explained above, the placeholder {icon} in the src attribute of the element should not be translated. The
alt attribute text ("shield icon") should be. The correctly translated HTML in Portuguese would be:

Attribute title

Links (<a>) and abbreviations (<abbr>) sometimes rely on an additional title attribute. The content of that attribute
is usually shown when placing a cursor over the link or abbreviation.

Learn how to␣
→˓install it

It is necessary to translate the contents of any title attribute. The correctly translated HTML in Spanish would be:

Aprenda cómo␣
→˓instalarlo

As explained above, the text content recommend-tor of the id attribute in the <a> element should not be trans-
lated. Neither should the {url} placeholder of href attribute. Only the text content of the title attribute ("How to
install Tor Browser") should be translated.

Other attributes

No attribute other than alt and title should be translated.

In particular, please make sure the attributes class, id, height, href, rel, src and width are never translated.

26 Chapter 4. Translations

CHAPTER

FIVE

CONTRIBUTING GUIDELINES

5.1 Signing Commits
Commits should be signed, as explained in the GitHub documentation. This helps verify commits proposed in a pull
request are from the expected author.

5.2 Code Review
Changes to SecureDrop code or documentation (in any repository) must be reviewed by a SecureDrop maintainer. This
is generally done in the form of GitHub pull requests (PRs), which are formally reviewed and merged.

If multiple individuals collaborate on a single PR, it is acceptable for cross-review by the authors to take place during
development, but there must not be any unreviewed changes in the pull request at the time of approval.

When adding a new component to SecureDrop, it is the developer’s responsibility to ensure it undergoes full review
before integration. For example, if you create a new GitHub repository, it must not be added as a dependency of
production code before the repository has been reviewed in its entirety.

If a component review is done by other means than a pull request, please ensure that a record of the review is kept in
an issue that has “code review” in its subject, so that it is discoverable at a later date.

5.3 Branching Strategy
Development for the upcoming release of SecureDrop takes place on develop, which is the default branch. If you want
to contribute, you should branch from and submit pull requests to develop. If you want to install or audit SecureDrop,
you should use the latest tag that is not a release candidate (e.g. 0.6 not 0.6-rc1).

Tip

After you have cloned the SecureDrop repository, you can run git tag locally to see all the tags. Alternatively,
you can view them on GitHub.

5.4 Automated Testing
When a pull request is submitted, we have Circle CI automatically run the SecureDrop test suites, which consist of:

1. Unit tests of the Python SecureDrop application code.

2. Functional tests that use Selenium to drive a web browser to verify the function of the application from the user’s
perspective.

3. Tests of the system configuration state using testinfra.

27

https://docs.github.com/en/github/authenticating-to-github/signing-commits
https://github.com/freedomofpress/securedrop/releases

SecureDrop Developer Documentation, Release latest

Before a PR can be merged, these tests must all pass. If you modify the application code, you should verify the tests
pass locally before submitting your PR. If you modify the server configuration, you should run the testinfra tests. Please
denote in the checklist when you submit the PR that you have performed these checks locally.

5.5 Code Style
We use code linters to keep a consistent code quality and style. These linters also run in CI and will produce build
failures. To avoid this, we have included a git pre-commit hook. You can install it with the following command run at
the root of the repository:

ln -sf .githooks/pre-commit .git/hooks/pre-commit

Note

The code linters are installed automatically on the Development VM, but for the pre-commit hook to work, you will
need to install the linting tools locally on your host machine. From the root of the repo you can run the following:

pip install --no-deps --require-hashes -r securedrop/requirements/python3/develop-
→˓requirements.txt

5.5.1 Python
All Python code should be flake8 compliant. You can run flake8 locally via:

make flake8

5.5.2 Shell
All Shell code (e.g. bash, sh) should be shellcheck compliant. You can run shellcheck locally via:

make shellcheck

For reference, consult the shellcheck wiki for detailed explanations of any reported violations.

5.5.3 HTML
HTML should be in compliance with Google’s HTML style guide. We use html-linter to lint our HTML templates in
securedrop/source_templates and securedrop/journalist_templates. Run the HTML linting options we
use via:

make html-lint

Accessibility

SecureDrop’s accessibility guidelines and tooling are a work in progress. At a minimum, if you make changes involving
images, make sure they have alt attributes in accordance with the W3C’s “alt decision tree”, so that the interfaces will
be navigable by people using screen-readers. For more-involved changes to the UIs, consult resources such as the A11y
Project checklist.

If you have accessibility expertise to offer, the “a11y” label in GitHub is a great place to contribute.

28 Chapter 5. Contributing Guidelines

https://flake8.pycqa.org/en/latest/
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck/wiki
https://google.github.io/styleguide/htmlcssguide.html
https://pypi.org/project/html-linter/
https://www.w3.org/WAI/tutorials/images/decision-tree/
https://www.a11yproject.com/checklist/
https://www.a11yproject.com/checklist/
https://github.com/freedomofpress/securedrop/labels/a11y

SecureDrop Developer Documentation, Release latest

5.5.4 YAML
The Ansible configuration is specified in YAML files, including variables, tasks, and playbooks. All YAML files in the
project should pass the yamllint standards declared in the .yamllint file at the root of the repository. Run the checks
locally via:

make yamllint

5.6 Type Hints in Python code
By adding type hints/annotations in the Python code, we are making the codebase easier to maintain in the long run by
explicitly specifying the expected input/output types of various functions.

Any pull request with Python code in SecureDrop should have corresponding type hints for all the functions. Type
hints and function annotations are defined in PEP 484 and in PEP 3107. We also use the mypy tool in our CI to find
bugs in our Python code.

If you are new to Python type hinting, please read the above mentioned PEP documents, and then go through the
examples in the mypy documentation. Some type annotations are included as code comments due to SecureDrop being
Python 2 only when they were added, but any annotation syntax supported in Python 3.5 is allowed (i.e. function but
not variable annotations which were added in Python 3.6).

5.6.1 Example of Type Hint
import typing
https://www.python.org/dev/peps/pep-0484/#runtime-or-type-checking
if typing.TYPE_CHECKING:

flake8 can not understand type annotation yet.
That is why all type annotation relative import
statements has to be marked as noqa.
https://flake8.pycqa.org/en/latest/user/error-codes.html?highlight=f401
from typing import Dict # noqa: F401

class Config(object):

def __init__(self):
type: () -> None
self.NAMES = {} # type: Dict[str, str]

def add(self, a, b):
type: (int, int) -> float
c = 10.5 # type: float
return a + b + c

def update(self, uid, Name):
type: (int, str) -> None
"""
This method updates the name example.
"""
self.NAMES[uid] = Name

def main():
type: () -> None
config = Config() # type: Config

(continues on next page)

5.6. Type Hints in Python code 29

https://github.com/adrienverge/yamllint
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-3107
https://github.com/python/mypy
https://mypy.readthedocs.io/en/stable/builtin_types.html

SecureDrop Developer Documentation, Release latest

(continued from previous page)

config.add(2, 3)
config.update(223, "SD")

if __name__ == '__main__':
main()

The above example shows how to do a conditional import of Dict class from typing module. typing.
TYPE_CHECKING will only be true when we use mypy to check type annotations.

5.6.2 How to Use mypy?
make lint already checks for any error using the mypy tool. In case you want to have a local installation, you can do
that using your Python 3 virtualenv.

$ python3 -m venv ../.py3
$ source ../.py3/bin/activate
$ pip install mypy
$ mypy securedrop

5.7 Git History
We currently use an explicit merge strategy to merge feature branches into develop.

Note

It is generally good practice to maintain a clean git history by reducing the number of commits to a reasonable
minimum. You can do this by squashing closely related commits through an interactive rebase once your PR is
close to being merged.

If you would like a project maintainer to help you with squashing commits in a PR, please don’t hesitate to leave a
comment requesting assistance.

5.8 Privileges

Note

The privilege escalation workflow is different for code maintainers and translation maintainers.

Dedicated contributors to SecureDrop will be granted extra privileges such as the right to push new branches or to
merge pull requests. Any contributor with the right technical and social skills is entitled to ask. The people who have
the power to grant such privileges are committed to do so in a transparent way as follows:

1. The contributor posts a message on Gitter asking for privileges (review or merge, etc.).

2. After at least a week someone with permissions to grant such privilege reviews the thread and either:

• grants the privilege if there are no objections from current maintainers and adds a message to the thread; or

• explains what is expected from the contributor before they can be granted the privilege.

3. The thread is closed.

30 Chapter 5. Contributing Guidelines

https://gitter.im/freedomofpress/securedrop

SecureDrop Developer Documentation, Release latest

The privileges of a developer who has not been active for six months or more are revoked. They can apply again at any
time.

5.9 Other Tips
• To aid in review, please write clear commit messages and include a descriptive PR summary. We have a PR

template that specifies the type of information you should include.

• To maximize the chance that your PR is merged, please include the minimal changes to implement the feature or
fix the bug.

• If there is not an existing issue for the PR you are interested in submitting, you should submit an issue first or
comment on an existing issue outlining how you intend to approach the problem.

5.9. Other Tips 31

https://chris.beams.io/posts/git-commit/

SecureDrop Developer Documentation, Release latest

32 Chapter 5. Contributing Guidelines

CHAPTER

SIX

TIPS & TRICKS

6.1 Using Tor Browser with the Development Environment
We strongly encourage sources to use Tor Browser when they access the Source Interface. Tor Browser is the easiest
way for the average person to use Tor without making potentially catastrophic mistakes, makes disabling JavaScript
easy via the handy NoScript icon in the toolbar, and prevents state about the source’s browsing habits (including their
use of SecureDrop) from being persisted to disk.

Since Tor Browser is based on an older version of Firefox (usually the current ESR release), it does not always render
HTML/CSS the same as other browsers (especially more recent versions of browsers). Therefore, we recommend
testing all changes to the web application in the Tor Browser instead of whatever browser you normally use for web
development. Unfortunately, it is not possible to access the local development servers by default, due to Tor Browser’s
proxy configuration.

To test the development environment in Tor Browser, you need to modify Tor Browser’s default settings to prevent
localhost from being resolved by the proxy:

1. In a new tab, navigate to about:config.

2. Click “I accept the Risk!”

3. In the search bar, enter network.proxy.allow_hijacking_localhost.

4. The default value is true. Double-click to set it to false.

Now you should be able to navigate to 127.0.0.1:8080 and 127.0.0.1:8081 in Tor Browser. For some reason, you
have to use 127.0.0.1 – localhost doesn’t work.

The modified value persists across restarts of Tor Browser.

6.2 Upgrading or Adding Python Dependencies
We use a pip-compile based workflow for adding Python dependencies. If you would like to add a Python dependency,
instead of editing the securedrop/requirements/python3/*.txt files directly, please:

1. Edit the relevant *.in file in securedrop/requirements/python3

2. Use the following shell script to generate securedrop/requirements/python3/*.txt files:

make update-pip-requirements

3. Commit both the securedrop/requirements/python3/*.in and securedrop/requirements/python3/
*.txt files

Note that application dependency changes are subject to closer review, using diffoscope or a similar tool to compare
the old and updated dependencies. You can request a review when submitting a PR.

33

https://nvie.com/posts/better-package-management/

SecureDrop Developer Documentation, Release latest

6.3 Architecture Diagrams
Some helpful diagrams for getting a sense of the SecureDrop application architecture are stored here, including a high-
level view of the SecureDrop database structure:

34 Chapter 6. Tips & Tricks

https://github.com/freedomofpress/securedrop-docs/tree/main/docs/diagrams

SecureDrop Developer Documentation, Release latest

6.3. Architecture Diagrams 35

SecureDrop Developer Documentation, Release latest

36 Chapter 6. Tips & Tricks

CHAPTER

SEVEN

POLICY ON SUPPORTED LANGUAGES

Version Approved
5 (internal link) 8 March 2023

7.1 Definitions

Note

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOM-
MENDED, MAY, and OPTIONAL in this document are to be interpreted as described in RFC 2119.

translation freeze
The deadline for translations to be reviewed and merged in order to be included in a given release. For Secure-
Drop, this is release day.

7.2 Thresholds for Translation and Review Coverage

Translation Coverage Review Coverage1

To grant support 100% 100%
To maintain support 80% 100%

In addition to these thresholds, the SecureDrop team will:

1. always prioritize the translation of source-facing strings, given their importance for sources’ security; and

2. inform Localization Lab when particular strings should be prioritized or even considered blocking for a given
release.

7.3 Granting Support for a Language
Granting support for a new language consists of adding an entry in the supported_locales object in securedrop’s
i18n.json and/or in the “Localization” section in securedrop-client’s MANIFEST.in. Other steps, such as com-
munication, are at the discretion of the Localization Manager.

1 Machine translation (e.g., Google Translate) MAY be used to close gaps in review coverage for an otherwise well-supported language. (It MAY
NOT be used to close gaps in translation coverage.) Because of the risk of low-quality machine translations especially from minority languages,
machine translation SHOULD be considered a last resort, on a case-by-case basis in consultation with Localization Lab.

37

https://github.com/freedomofpress/securedrop-engineering/issues/6
https://datatracker.ietf.org/doc/html/rfc2119

SecureDrop Developer Documentation, Release latest

1. A language L that reaches coverage in time for a release version V ’s translation freeze SHOULD be nominated
for support in version V.

2. The Localization Manager SHOULD ask Localization Lab whether they believe L’s language team is likely to
be able to maintain coverage for the foreseeable future.

1. If so, the Localization Manager SHOULD grant support for L.

2. If not, the Localization Manager MUST NOT grant support for L.

7.4 Revoking Support for a Language
Revoking support for a currently-supported language consists of removing the language’s entries in i18n.json and/or
MANIFEST.in. Other steps, such as communication, are at the discretion of the Localization Manager.

Consider an expected release timeline as follows:

Version Translation Freeze
V1 January 1
V2 March 1
V3 May 1

Then:

1. A language L that misses coverage for a release version V1’s translation freeze MUST be considered on probation
for up to the next two releases V2 and V3. While on probation, a language is still considered supported until it
has missed coverage for a total of 3 consecutive translation freezes.

1. In consultation with Localization Lab, the Localization Manager MAY consult the language census (internal
link) and reach out to administrators who may be able to contribute to translation and review.

2. If L misses coverage again for V2’s translation freeze and does not regain coverage for V3’s translation freeze,
then the Localization Manager SHOULD revoke support for L for V3.

1. In consultation with Localization Lab and the Release Manager, the Localization Manager MAY extend
L’s probationary period, for example if the language census indicates that revoking support for L would
jeopardize the default locale for many instances, for especially high-traffic or high-profile instances, etc.

7.5 Adding a New Language for Translation
Translators MUST ask Localization Lab to add a new language for translation in Weblate.

7.6 Technical Limitations
• Although Weblate, our localization platform, supports arbitrary languages for translation and review, at runtime

SecureDrop components are generally limited to locales with ISO 639-1 codes registered in the Common Locale
Data Repository (CLDR).2

• SecureDrop cannot be translated into the following constructed languages, because their ISO 639-1 codes are
used in our automated tools and tests:

– Esperanto (eo): used for pseudolocale generation

– Interlingua (ia): used for testing
2 For example, to be supported by securedrop, a new language’s ISO 639-1 code must be registered in the CLDR release used by the version

of Babel we install.

38 Chapter 7. Policy on Supported Languages

https://wiki.localizationlab.org/index.php/Category:Language_Teams
https://github.com/freedomofpress/i18n_scan
https://github.com/freedomofpress/i18n_scan
https://en.wikipedia.org/wiki/Codes_for_constructed_languages
https://docs.weblate.org/en/weblate-4.14/admin/addons.html#pseudolocale-generation
https://babel.pocoo.org/en/latest/locale.html
https://babel.pocoo.org/en/latest/locale.html

SecureDrop Developer Documentation, Release latest

– Ido (io): reserved for future use

7.6. Technical Limitations 39

SecureDrop Developer Documentation, Release latest

40 Chapter 7. Policy on Supported Languages

CHAPTER

EIGHT

CONTINUOUS INTEGRATION

The SecureDrop project uses GitHub Actions for running automated continuous integration on code changes. You can
get an overview of what each project does by reviewing the Makefile and files in the .github/workflows folder of
the project’s repository.

8.1 Basics
Our CI runs a mixture of linters, tests and build processes to validate code submissions.

Most tasks have a corresponding make target that will run the same command locally. Common targets across all our
projects include:

• make lint: run linters

• make fix: apply automated fixes from formatters and linters

• make test: run automated tests

In CI, these are run in a container using the corresponding Linux distribution (e.g. Debian or Fedora), which can also
be used to reproduce CI results locally. Some projects, like securedrop (server) and securedrop-workstation,
automatically run commands in containers.

8.2 Pull requests
Most CI jobs are triggered by both push and pull_request events. The former is run against your branch, while the
latter is run against your branch merged into main (or develop).

8.3 Special branch prefixes
In the securedrop repository, some slower jobs are only triggered if a specific branch prefix is used when creating the
pull request. Currently these are:

• stg-*: runs a staging build in Google Cloud, see Configuration Tests

• l10n-*: runs localization tests across all 20+ supported languages

8.4 Nightlies
For securedrop-workstation and securedrop-client, packages are built for every merged commit as well as
every night. These packages are published to the test yum and apt repositories.

41

https://docs.github.com/en/actions
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows

SecureDrop Developer Documentation, Release latest

A “nightlies” workflow runs in each repository that builds the respective packages. The workflow uses an au-
thenticated token for the sdcibot GitHub account to push the packages and build metadata to build-logs,
securedrop-apt-test and securedrop-yum-test.

The securedrop-apt-test and securedrop-yum-test repositories have a workflow that automatically prunes
older packages, also using a token for sdcibot to push to themselves.

8.5 Workstation CI
For testing securedrop-workstation, we run a special CI job that virtualizes Qubes OS inside of VMWare. Docu-
mentation for this is available in the securedrop-workstation-ci repository.

42 Chapter 8. Continuous Integration

https://github.com/freedomofpress/securedrop-workstation-ci

CHAPTER

NINE

DEPENDENCY SPECIFICATION AND UPDATE POLICIES

This document describes the process for updating SecureDrop dependencies. Since dependencies are run in the pro-
duction environment, care should be taken when adding or updating dependencies to minimize risk. The following
guidelines describe the process for adding or updating dependencies and specifying supported version constraints.
They should be followed by the PR author or reviewer at the time of PR review.

Authors of PRs are encouraged to perform the investigations described below when updating or adding dependencies,
and post the results of their investigation on the PR. Avoid if possible putting all the burden of dependency review on
the PR reviewer. Please note that the following guidelines do not apply to dev, test, or deployment only (e.g. s3transfer,
provided the deployment artifacts are signed, which they should be) dependencies.

We use tools that pin every dependency to a specific version and verify they match published checksums. Historically
we used pip-compile for this purpose; we are currently in the process of migrating to poetry.

9.1 Adding a dependency
Before a new dependency should be added, a review should be performed. The following factors should be considered:

1. Is this dependency well-maintained? Are there recent commits or releases? Are high priority bugs on their
bug tracker responded to and fixed?

2. How secure is this dependency? Have there been vulnerabilities reported in the project before? How have they
responded? Do any of its dependencies have known CVEs? In lieu of a full code review (which might be a high
burden), one might also run bandit static analysis on the Python dependency, are there high severity issues?

3. How popular is this dependency? How many GitHub stars does it have? Do other well-known projects depend
on it? One can look at the GitHub dependency graph, e.g. Flask, in order to see the number of projects that
use the dependency. By relying on well-known, widely-used dependencies, we benefit from the many eyes that
should be evaluating it.

9.2 Updating dependencies
When updating a dependency, one should:

1. Review the changelog: were any high-risk areas of the code modified? Were bugs with security implications
fixed?

2. Review the diff: Perform a timeboxed review of the diff. Are there any concerning areas (primarily in terms of
security)? One can use the diffoscope tool from https://try.diffoscope.org/ locally to view the diffs in the source
code.

• Note: we trust packages managed by the Python Packaging Authority (PyPA) and don’t diff review them.

3. Explain version specifiers: Use comments in .in or pyproject.toml files to explain why you are specifying
certain versions or ranges.

43

https://try.diffoscope.org/
https://www.pypa.io/en/latest/

SecureDrop Developer Documentation, Release latest

9.2.1 dependabot automated updates
GitHub’s dependabot can be used to automatically propose pull requests for dependency updates.

In addition to the normal review process, the reviewer should verify the GitHub-provided checksums match those
published for the package on pypi.org. To do so, locate the package on PyPI, select the correct version from the
“Release history” page, and click “Download files”. Identify the files corresponding to the Dependabot diff, and click
“view hashes” to compare the hashes.

You should see a dialog similar to this one:

Fig. 1: Example dialog for displaying hashes of a Python dependency published on PyPI

9.3 Specifying version constraints
For certain high-risk dependencies, we carefully control when and how far they’re updated. As a general rule, we
don’t want to accept major version changes without substantial testing. For some projects, like Ansible before it was
semver-compatible, we only want to permit patch changes, not major or minor. For example, in a requirements.in
file:

bad
ansible>=2.9.13
good
v2.10.0 is a breaking change, requires custom update logic
ansible>=2.9.13,<2.10.0

Make sure to provide a comment explaining the version constraints, so that future maintainers will have an easier time
making sense of the controls. If no constraint is specified, then the latest version is assumed to be appropriate. Typically,
you should set a lower bound on the target version you just upgraded to (for example, due to a safety alert):

Jinja2>=2.11.3

Doing so clearly indicates to other maintainers that no version less than 2.11.3 should be used. The next time the
requirement is updated, the lower bound should be adjusted accordingly.

For projects using poetry, the ^ semver operator should be used, which only permits semver minor and patch updates:

44 Chapter 9. Dependency specification and update policies

https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://pypi.org/

SecureDrop Developer Documentation, Release latest

[tool.poetry.dependencies]
sphinx = "^6.1.3"

9.3.1 Additional comments
These same processes should be followed for the dependencies of the dependency highlighted in the diff.

Some package updates will require new reproducible wheels to be published in the securedrop-builder repository; this
should be done at the same time as the dependency update.

9.4 Dependency diff review procedure
1. Download the source tarball from pypi.org for both the version from which you are starting your diff review and the
target version, example here for the diff review for cryptography 2.3 to 2.7:

$ pip download --no-binary :all: --no-deps cryptography==2.3
$ pip download --no-binary :all: --no-deps cryptography==2.7

2. Compute the sha256 hashes:

$ shasum -a 256 cryptography-{2.3,2.7}.tar.gz
c132bab45d4bd0fff1d3fe294d92b0a6eb8404e93337b3127bdec9f21de117e6 cryptography-2.3.
→˓tar.gz
e6347742ac8f35ded4a46ff835c60e68c22a536a8ae5c4422966d06946b6d4c6 cryptography-2.7.
→˓tar.gz

Verify that these hashes match what’s in the requirements file (before and after).

3. Now perform a timeboxed review of the diff using diffoscope or your tool of choice, e.g.:

$ tar xvzf cryptography-2.3.tar.gz
$ tar xvzf cryptography-2.7.tar.gz
$ diff -r cryptography-2.3 cryptography-2.7 | more

(Fun tip: use script to write diffoscope output to a file while preserving colors, and review at your leisure
with less -R.)

If you find issues, discuss with other team members and escalate upstream where necessary.

4. Else, make a signed document containing the source tarball hashes before/after, and sign it:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Diff reviewed from:

c132bab45d4bd0fff1d3fe294d92b0a6eb8404e93337b3127bdec9f21de117e6 cryptography-2.
→˓3.tar.gz

e6347742ac8f35ded4a46ff835c60e68c22a536a8ae5c4422966d06946b6d4c6 cryptography-2.
→˓7.tar.gz

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEntsmvkbGwko38nhRsH6AZWrNlQEFAl1a9swACgkQsH6AZWrN
lQGwbQ/+OwKgNKJuU44+zW8kBQ7l08oiLKf02kxBaGZYMBamd2/LMjATQGdQ8ocp

(continues on next page)

9.4. Dependency diff review procedure 45

https://github.com/freedomofpress/securedrop-builder

SecureDrop Developer Documentation, Release latest

(continued from previous page)

sIQ4YXq+ybInv3ZNP8Ok9tuFP3o+3PsXU1Mc0A3FZnH4wwxFUGckWV57drFIWuSR
pNOAO3M8VaggMP7FaDFgSRa1BmjBIYGW/FL+nUUSQtkFwOmGJEmVBo0Uxf8WXztP
lnio4BYYsQbhjGSlm1jXjNyrMkHefYluKQBsjcgecU/dngTtOAD3GgAC6wczBztX
k7Afzmv9vJVRIecZGkzfNNuJC5WCQjoH3y6DiyQYiIk9sIG0TbFnvqNIG2azWY5b
AdlHgbsZqRO1tIMzjpn5fiiXHekJ8L8Y6tRTYGgkN9IIUAwwUhFkd0ExPB3OGOWz
4CItkwyrfUC6RtwH0oGhHNUaDeGWrh3TyHwjHE9kFQDDz+RXvlSpBkLmZof/UK0V
mK8TSs5LsA+WPTP8zbgjORcMmOZL44HdnrxnOpfM+YhBDKp8bUC2wB9Rasew74y6
sM07lHyQQzDuPGvV/SrCVGJF8hDDA1OVLXK3QasEdHnvlU5w4lM8uLb+rX2sC8Im
+HSpm3f4N7dbPTTft352+uSgD0vXGqzqwcOrovtEJcgb1T/IpN40QvnsrLQyMZ7O
xPA9YoeZOlHsgAazDPXfHRqsPmJslZp80uZqbfp56OZPBBJKbuw=
=T0MH
-----END PGP SIGNATURE-----

Note that you generate an inline signature like this via: gpg --clear-sign crypto-diff.txt

5. At this point, create a wiki page e.g. https://github.com/freedomofpress/securedrop-debian-packaging/wiki/
cryptography-2.3-to-2.7 containing the hashes before/after.

6. Comment on the PR indicating that the diff review is approved.

7. Send the same content from the wiki to diff-review@python.org.

9.5 Auditing Rust dependencies
We audit Rust crates using the Cargo Vet tool. To get started:

$ cargo install --locked cargo-vet

Then you can audit both new and updated crates:

$ cargo vet diff $CRATE $OLD $NEW # $CRATE has been updated from $OLD to $NEW.
$ cargo vet inspect $CRATE $VERSION # $CRATE is entirely new at $VERSION.
[...]
$ cargo vet certify

Running cargo vet suggest after updating or modifying dependencies will automatically provide you with the
relevant diff and inspect commands to run.

Cargo Vet has two default policies: safe-to-deploy and safe-to-run. We consider the lower safe-to-run policy to be
equivalent to our standard practice for reviewing Python dependencies. Your own audits should certify safe-to-run
unless you have the expertise, and have invested the time, to review up to the higher safe-to-deploy standard.

9.5.1 Trusting third-party audits
To benefit from work others have done in reviewing crates, we import and trust other organizations’ audits. New
organizations should be reviewed and discussed on a case-by-case basis amongst SecureDrop maintainers.

We also trust individual developers who are writing and releasing crates that we use. Currently we trust developers who
are members of either the Rust Project or Sequoia-PGP. This trust is valid for 6 months and must be extended regularly.

9.5.2 Exemptions
SecureDrop only runs on the x86_64-unknown-linux-gnu target, so we only need to audit code and crates that apply
to it. For example, we can ignore all of the windows-sys crates.

Exemptions can be specified in supply-chain/config.toml:

46 Chapter 9. Dependency specification and update policies

https://github.com/freedomofpress/securedrop-debian-packaging/wiki/cryptography-2.3-to-2.7
https://github.com/freedomofpress/securedrop-debian-packaging/wiki/cryptography-2.3-to-2.7
mailto:diff-review@python.org
https://mozilla.github.io/cargo-vet/index.html
https://mozilla.github.io/cargo-vet/specifying-policies.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

SecureDrop Developer Documentation, Release latest

[policy.windows-sys]
criteria = []
notes = "Windows-only"

Note that within crates do review, you should still review all the code, regardless of what platform it is targeting.

9.5. Auditing Rust dependencies 47

SecureDrop Developer Documentation, Release latest

48 Chapter 9. Dependency specification and update policies

CHAPTER

TEN

REPRODUCIBLE BUILDS

We have implemented reproducible builds for most of our projects (see the exceptions below).

10.1 Goals
A developer should be able to build Debian and RPM packages and get bit-for-bit identical results as another developer.
This is primarily done at release time, to verify the packages were not altered in some way.

We also want third-parties to be able to take our code and reproduce the output to verify we are building from what
we’ve published and not e.g. inserting secret backdoors.

We expect that any reproduction attempts will be done near the time of the release (on the scale of months). While we
are supportive of efforts to reproducibly rebuild packages from years ago, we are not explicitly guaranteeing that.

10.2 Build environment
Our primary strategy for having reproducible builds is using a containerized build environment (docker or podman).
By using containers, we ensure the build environment is:

• clean: no manual modifications have been made to it (aside from what is specified in a Dockerfile or equivalent)

• minimalist: only essential packages and build requirements are installed.

• up to date: all installed packages should be up to date and we should be able to verify this

• repeatable: it should be straightforward for another developer to set up an identical environment

10.3 Build metadata
We publish all the build metadata available to us, so that others have as much information as possible when attempting
to reproduce our builds. See build metadata for more details.

10.4 Reproducible wheels
Python packages with C or other native dependencies are often not reproducible because the build process happens in
a randomized temporary directory, which is then captured in the .so. We build wheels ourselves in a fixed path to
ensure they’re reproducible, see securedrop-builder for more details.

49

https://reproducible-builds.org/docs/definition/
https://github.com/freedomofpress/securedrop-builder

SecureDrop Developer Documentation, Release latest

10.5 Not reproducible
Currently the securedrop-app-code package (issue #5901) and our Linux kernel builds (issue #3) are not repro-
ducible.

10.6 Tools
We primarily use diffoscope to identify differences in everything; it can handle Debian packages, RPM packages,
Python wheels, etc.

It also supports outputting markdown; if you pass --markdown - and pipe it to gh gist create - -f diff.md
you can share and easily readable diffoscope report.

We have also used reprotest in a few places, but recently have been phasing it out in favor of just repeating builds twice,
in parallel, and diffoscoping the result.

50 Chapter 10. Reproducible builds

https://github.com/freedomofpress/securedrop/issues/5901
https://github.com/freedomofpress/kernel-builder/issues/3
https://diffoscope.org/
https://pypi.org/project/reprotest/

CHAPTER

ELEVEN

JOURNALIST INTERFACE API

This document describes the endpoints for SecureDrop’s Journalist Interface API.

11.1 Versioning
The API is versioned and we are currently using version 1. This is set via the base URL, which is:

/api/v1/

11.2 Content Type
Clients shall send the following headers:

'Accept': 'application/json',
'Content-Type': 'application/json'

11.3 Authentication
POST /api/v1/token to get a token with the username, password, and two-factor code in the request body:

{
"username": "journalist",
"passphrase": "monkey potato pizza quality silica growing deduce",
"one_time_code": "123456"

}

This will produce a response with your Authorization token:

{
"expiration": "2018-07-10T04:29:41.696321Z",
"token": "eyJhbGciOiJIUzI1NiIsImV4cCI6MTUzMTE5Njk4MSwiaWF0IjoxNTMxMTY4MTgxfQ.

→˓eyJpZCI6MX0.TBSvfrICMxtvWgpVZzqTl6wHYNQuGPOaZpuAKwwIXXo",
"journalist_uuid": "54d81dae-9d94-4145-8a57-4c804a04cfe0",
"journalist_first_name": "daniel",
"journalist_last_name": "ellsberg"

}

Thereafter in order to authenticate to protected endpoints, send the token in HTTP Authorization header:

51

SecureDrop Developer Documentation, Release latest

Authorization: Token eyJhbGciOiJIUzI1NiIsImV4cCI6MTUzMDU4NjU4MiwifWF0IjoxNTMwNTc5MzgyfQ.
→˓eyJpZCI6MX0.P_PfcLMk1Dq5VCIANo-lJbu0ZyCL2VcT8qf9fIZsTCM

This header will be checked with each API request to see if it is valid and not yet expired. Tokens currently expire after
8 hours.

11.3.1 Logout
Clients should use the logout endpoint to invalidate their token:

POST /api/v1/logout with the token in the HTTP Authorization header and you will get the following response
upon successful invalidation of the API token:

{
"message": "Your token has been revoked."

}

11.4 Errors
The API will respond to all errors (400-599) with a JSON object with the following fields:

{
"message": "This is a detailed error message."

}

11.5 Endpoints

11.5.1 Root Endpoint
Does not require authentication.

The root endpoint describes the available resources:

GET /api/v1/

Response 200 (application/json):

{
"all_users_url": "/api/v1/users",
"auth_token_url": "/api/v1/token",
"current_user_url": "/api/v1/user",
"replies_url": "/api/v1/replies",
"seen_url": "/api/v1/seen",
"sources_url": "/api/v1/sources",
"submissions_url": "/api/v1/submissions"

}

11.5.2 Sources
Get all sources

Requires authentication. Provides a list of all sources and data about them (such as number of documents, submissions,
and their public key that replies should be encrypted to).

52 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

GET /api/v1/sources

Response 200 (application/json):

{
"sources": [

{
"add_star_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/add_

→˓star",
"interaction_count": 2,
"is_flagged": false,
"is_starred": false,
"journalist_designation": "validated benefactress",
"key": {
"fingerprint": "8C71EA66B0278309A31DBD691733DA655854DB12",
"public": "-----BEGIN PGP PUBLIC KEY BLOCK-----\n\

→˓nmQINBFGRfoABEACf5Y+6prky4JcWmKSsuh/52ZLw1FTCqrgAIK0QVFZ+cy2riFHv\
→˓njQXYB4bPOCt7PmYbmMxxIWkXqJCaPVkLbpi7p5X2Wkgh+qGgjIjotq2Y9iPP6KQ3\nGvJdpG3rWwbOsrt4rDh/
→˓L/lStn+ty4io3cDr7l7ISOtOcmOPKeKv6eGxSmCAYsnJ\nKKsIWcSjfb82KhCzL/
→˓BBApqXt9uc6Jqjh1RPL3bGIG0tq37yX/zbFefDBDF8m8d6\nc7pvvYMaO90PGViBVg6hh8+rPq/
→˓rK7YyHOWZlt6MXw7cm/GaH+DkGxGKe8Yuj92R\nOPNQFfpAI/tXldEcEvdG/
→˓4mba7uxrEMe33tsnbQamFZtXFAIrSjXa9O4CEEWnRCz\nNE90u9FeM4bk/lModsr7gOrWbO6QwctVt/
→˓YnvI7blUXzpMzDsbgvR89auKS9VHGZ\nY5L3yz0yVwRAIw3/
→˓CwsJEYajKiPadcExhZhc8OCTTe8zPXxQ8OWrvmFBA6x6cfvq\nSqoH3NXrDVY/
→˓6w9dCqVXitcYynATqm0Qkkr81jXE3BEfx7AQPXHXGasvFM1mqeQU\n+WQPqUKheomy7/
→˓7z3heasKub3MYLkuW6y7c31z6cmvt6h5fYcNPvQXCox4BJkVcK\
→˓nPbzst612sbqhTQEeSsDnVU1sPLxpfbxFfKuWQlEV8kfm4JsMbryqG9Z0RQARAQAB\
→˓ntHxBdXRvZ2VuZXJhdGVkIEtleSA8UFlNR0IzRE9BNVFLVFozNjVPUTNQWUpDMk9a\
→˓nQ0RXQjIyM1dFS1Q3V0o1NDI0QUZUT1ZFSjI0SEpaSFRYQTZTQjVGUkFBVjdHRVFQ\
→˓nS01HQjQzUUxMVzNTRUxFWENYWklVRk5QWTU2WT0+iQI3BBMBCgAhBQJRkX6AAhsv\
→˓nBQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEBcz2mVYVNsSQ88P/3e54noTBb/O\
→˓nFVVNYw5oY9zIQPsoYUkCCvKCv26bi3qpfsDWjohyupKLth9AfFBTk3oiNhzeFhiv\
→˓nZ5RbLgJYAWuzWNdMCSd3RAqZbbzFx3255oR9t+/RNwjeOqKpoO313myAKsRR1z+N\nbRF0A1C8GiMOCrvV/
→˓9p+rsTDrv+8fXkrQz55nGkt6JlI43EqlH0Eg7wxI+HMgTdz\
→˓nsPWBR63INNhkrR5Ln7YShOBmnUWjpEjFYvZlAbzkMbbfznDZ2g7auRpT0S8vNgcG\
→˓n9k9dG3gpMFnHiaE4SmdOIb82qv9X6Q7Owwxmz85JAe/P/CYsndUbRHSfXMp16igm\nj0RfcC7J0E/
→˓SkwBY9jc+YtGCWfqqXa1a4uY03vN1YqqFWqb+exa/Qv14wwgcS17p\n8O/
→˓X1y9gPV0qleikFgNt8sPd+a2lVdRSjh4Xh7l6eTHMqoDUJXtFu0evSg3oBFZj\n8OIXe8KZltJCYlxN+1/
→˓xlvZjAVfmYT6kxOXYsPB3o3Z9Hemgsw2PnjI04ZMwTSyb\n101xfgB1XBd1Hrv9WQ5PNoPwXRhx7/bfzQWTx/
→˓uP8luT6yqEerLiF0m/ShvYvKQa\
→˓ncLuwtW3Rlj1BD5CpdG+491jJ6cRXq8xfYmCd2MmBTtMAoq4DobYw75NKIssZ5gs6\
→˓nu6NXuCWOsf8lQNBKxkNpuohLlTef8n1y\n=Zp4Z\n-----END PGP PUBLIC KEY BLOCK-----\n",

"type": "PGP"
},
"last_updated": "2018-07-10T00:52:21.157409Z",
"number_of_documents": 0,
"number_of_messages": 2,
"remove_star_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/

→˓remove_star",
"replies_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/replies

→˓",
"submissions_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/

→˓submissions",
(continues on next page)

11.5. Endpoints 53

SecureDrop Developer Documentation, Release latest

(continued from previous page)

"url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a",
"uuid": "9b6df7c9-a6b1-461d-91f0-5b715fc7a47a"

},
{

"add_star_url": "/api/v1/sources/f086bd03-1c89-49fb-82d5-00084c17b4ce/add_
→˓star",

"interaction_count": 2,
"is_flagged": false,
"is_starred": false,
"journalist_designation": "navigational firearm",
"key": {
"fingerprint": "C20D06197FFAE44552358AA5886EEA0A360D9FF1",
"public": "-----BEGIN PGP PUBLIC KEY BLOCK-----\n\

→˓nmQINBFGRfoABEACdO+SPazdXyWRnK6JQmDvwL5Vfmp4bxK3fzM6JFO0X6B6T8Unj\
→˓n5bLyUM3+K7Cwp4x1uANo60X5k6zMJFqxFVbIdXearfU0DyGWG3DINGsIwf1NNkuA\
→˓noj3QVcv+jhigpn1wZvDT8AyJqaEisUddREUw1CpvOdCFw1uIFfodz5GJmVXZnApN\n27BJKNnsJtL8lWrUvTY/
→˓n4afXgMZ78ZH8aOkdmJ7wmVbIhrZlHu4UHJP6DbCm/+D\
→˓n7o74ozWCv6si9bfBpG6UbCxVqaeRYjb1kGT0y36TLy8W6+JXw+yISgKTORETTjQX\
→˓nzzHP5gfLu8ZTJhSvMV+xkpxc0HaX6P80rQR40QfVYRgO1uZ1Bfab+rPdUrQSPdnb\
→˓ntN6Rh6rN0QfucuqPYpiS8AJl1Si9ztyIdkYLJTL/CseO6SWDc/krIj8mX4VbN0h0\
→˓nYwECCbtv5uX8q3Jhkc8oTjpW+DRxfb1UW7us1nOoXVj9aOQaUM6QZtbVz0qQDJ9e\
→˓nSOqIx2tv5qToTxKim8E9HjX+NCvZKDIqvaoDpreMHkFP/Fo0t0tnbHTZAWcUMaih\
→˓n5WNqrFqpGYm1fDfYDIL9m3DPVaFHk3eO7apxQXwDrckeRY7Bma+YLOXG4yVf/If6\
→˓nKedgBz0Nx1gZcU6c10Fy3Dn90jcjYtTOtrEsVORdfE/1SVBKmAOjpYirnQARAQAB\
→˓ntHxBdXRvZ2VuZXJhdGVkIEtleSA8MldXQlhaRlo1Q1RYSkVCQzZYQUNZUVhMWlNN\
→˓nNEdCUk0zUVlZWjJMR0VPQUxQTEZKSjVCR1lPSzRZUzU0SktYSlQzTlhVTkpLQ0VH\
→˓nTFU2RFVQUldGWEM1WlEzRk1UVFhDM0VSRlQzWT0+iQI3BBMBCgAhBQJRkX6AAhsv\
→˓nBQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEIhu6go2DZ/xLcgP/1lEL1F7hoQr\nLQm8T/
→˓DqjoExh0F8am9SKb2lH9HSBUJPY9b/oPjptxyg/3NlGXP/GJGcI6SVXtnq\nGU2D2+vMUUrnV/
→˓AemAtBUIquIXMEujbGdKOuWTBCntgj6PJL6/VNi2o+v9FxATN1\n6hefcdOIk7DMaK8y56BJA+aI/
→˓7TnCr1ndHLUMXh0rKd8GSl3vXtv2kuY8iSqiOmj\
→˓nuOtW1w2lByFBglNLgnozdbudwwVqNvKX8j3oWJKsJ525Y3HsWka/l4GbkowveUYR\
→˓nU66usAX6KS1zT01pLDmYFCL7lX8SPkZq97qHoFa1C9NIHW2gP+y8Q922E9QWBqy7\n/
→˓g30ZF73MgZCOnFOChswH607LBvMGUyz+A2Qjpd7Zvf67G33inY7QlGkMI59Zz4T\nXXv/
→˓1U3Gl6LLkwGWrTDhqHgK2KA9+B6gPYDV9xh/1HTvLBE4Wf8EHhtUyW1ZxzY5\nuXvZt5OH/UKpuhcsuN6c/
→˓5+QQk0i85jTBPXm7/0XcbbRuBTnl6CiVM8vGuaLjOdW\
→˓ntAlRmX9hS7jmdE9e3Yl17qUPwlEEKSFH8Z6GgEEommoHPsgmDrQxUS6v68zfcmf3\
→˓nAE+dfKUDfC7muZfZQ0YaqeHMrDyLozRIjVtx6P3fxZPZfUvfrV4guJOVOMwi+Z1F\
→˓n5UrZB6IrSA4njr9Vr+Fb0p+v73pfV6NT\n=e+yq\n-----END PGP PUBLIC KEY BLOCK-----\n",

"type": "PGP"
},
"last_updated": "2018-07-10T00:52:25.696391Z",
"number_of_documents": 0,
"number_of_messages": 2,
"remove_star_url": "/api/v1/sources/f086bd03-1c89-49fb-82d5-00084c17b4ce/

→˓remove_star",
"replies_url": "/api/v1/sources/f086bd03-1c89-49fb-82d5-00084c17b4ce/replies

→˓",
"submissions_url": "/api/v1/sources/f086bd03-1c89-49fb-82d5-00084c17b4ce/

→˓submissions",
"url": "/api/v1/sources/f086bd03-1c89-49fb-82d5-00084c17b4ce",
"uuid": "f086bd03-1c89-49fb-82d5-00084c17b4ce"

(continues on next page)

54 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

(continued from previous page)

}
]

}

Get a single source

Requires authentication.

GET /sources/<source_uuid>

Response 200 (application/json):

{
"add_star_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/add_star",
"interaction_count": 2,
"is_flagged": false,
"is_starred": false,
"journalist_designation": "validated benefactress",
"key": {
"fingerprint": "8C71EA66B0278309A31DBD691733DA655854DB12",
"public": "-----BEGIN PGP PUBLIC KEY BLOCK-----\n\

→˓nmQINBFGRfoABEACf5Y+6prky4JcWmKSsuh/52ZLw1FTCqrgAIK0QVFZ+cy2riFHv\
→˓njQXYB4bPOCt7PmYbmMxxIWkXqJCaPVkLbpi7p5X2Wkgh+qGgjIjotq2Y9iPP6KQ3\nGvJdpG3rWwbOsrt4rDh/
→˓L/lStn+ty4io3cDr7l7ISOtOcmOPKeKv6eGxSmCAYsnJ\nKKsIWcSjfb82KhCzL/
→˓BBApqXt9uc6Jqjh1RPL3bGIG0tq37yX/zbFefDBDF8m8d6\nc7pvvYMaO90PGViBVg6hh8+rPq/
→˓rK7YyHOWZlt6MXw7cm/GaH+DkGxGKe8Yuj92R\nOPNQFfpAI/tXldEcEvdG/
→˓4mba7uxrEMe33tsnbQamFZtXFAIrSjXa9O4CEEWnRCz\nNE90u9FeM4bk/lModsr7gOrWbO6QwctVt/
→˓YnvI7blUXzpMzDsbgvR89auKS9VHGZ\nY5L3yz0yVwRAIw3/
→˓CwsJEYajKiPadcExhZhc8OCTTe8zPXxQ8OWrvmFBA6x6cfvq\nSqoH3NXrDVY/
→˓6w9dCqVXitcYynATqm0Qkkr81jXE3BEfx7AQPXHXGasvFM1mqeQU\n+WQPqUKheomy7/
→˓7z3heasKub3MYLkuW6y7c31z6cmvt6h5fYcNPvQXCox4BJkVcK\
→˓nPbzst612sbqhTQEeSsDnVU1sPLxpfbxFfKuWQlEV8kfm4JsMbryqG9Z0RQARAQAB\
→˓ntHxBdXRvZ2VuZXJhdGVkIEtleSA8UFlNR0IzRE9BNVFLVFozNjVPUTNQWUpDMk9a\
→˓nQ0RXQjIyM1dFS1Q3V0o1NDI0QUZUT1ZFSjI0SEpaSFRYQTZTQjVGUkFBVjdHRVFQ\
→˓nS01HQjQzUUxMVzNTRUxFWENYWklVRk5QWTU2WT0+iQI3BBMBCgAhBQJRkX6AAhsv\
→˓nBQsJCAcCBhUICQoLAgQWAgMBAh4BAheAAAoJEBcz2mVYVNsSQ88P/3e54noTBb/O\
→˓nFVVNYw5oY9zIQPsoYUkCCvKCv26bi3qpfsDWjohyupKLth9AfFBTk3oiNhzeFhiv\
→˓nZ5RbLgJYAWuzWNdMCSd3RAqZbbzFx3255oR9t+/RNwjeOqKpoO313myAKsRR1z+N\nbRF0A1C8GiMOCrvV/
→˓9p+rsTDrv+8fXkrQz55nGkt6JlI43EqlH0Eg7wxI+HMgTdz\
→˓nsPWBR63INNhkrR5Ln7YShOBmnUWjpEjFYvZlAbzkMbbfznDZ2g7auRpT0S8vNgcG\
→˓n9k9dG3gpMFnHiaE4SmdOIb82qv9X6Q7Owwxmz85JAe/P/CYsndUbRHSfXMp16igm\nj0RfcC7J0E/
→˓SkwBY9jc+YtGCWfqqXa1a4uY03vN1YqqFWqb+exa/Qv14wwgcS17p\n8O/
→˓X1y9gPV0qleikFgNt8sPd+a2lVdRSjh4Xh7l6eTHMqoDUJXtFu0evSg3oBFZj\n8OIXe8KZltJCYlxN+1/
→˓xlvZjAVfmYT6kxOXYsPB3o3Z9Hemgsw2PnjI04ZMwTSyb\n101xfgB1XBd1Hrv9WQ5PNoPwXRhx7/bfzQWTx/
→˓uP8luT6yqEerLiF0m/ShvYvKQa\
→˓ncLuwtW3Rlj1BD5CpdG+491jJ6cRXq8xfYmCd2MmBTtMAoq4DobYw75NKIssZ5gs6\
→˓nu6NXuCWOsf8lQNBKxkNpuohLlTef8n1y\n=Zp4Z\n-----END PGP PUBLIC KEY BLOCK-----\n",

"type": "PGP"
},
"last_updated": "2018-07-10T00:52:21.157409Z",
"number_of_documents": 0,
"number_of_messages": 2,

(continues on next page)

11.5. Endpoints 55

SecureDrop Developer Documentation, Release latest

(continued from previous page)

"remove_star_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/remove_star
→˓",
"replies_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/replies",
"submissions_url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a/submissions

→˓",
"url": "/api/v1/sources/9b6df7c9-a6b1-461d-91f0-5b715fc7a47a",
"uuid": "9b6df7c9-a6b1-461d-91f0-5b715fc7a47a"

}

Get all submissions associated with a source

Requires authentication.

GET /api/v1/sources/<source_uuid>/submissions

Response 200 (application/json):

{
"submissions": [
{
"download_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0/download",
"filename": "1-dark-haired_insolation-msg.gpg",
"is_file": false,
"is_message": true,
"is_read": true,
"seen_by": [
"1c914871-a335-44ba-b2ae-da878cbc3630"

],
"size": 593,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"submission_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/

→˓submissions/b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0",
"uuid": "b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0"

},
{
"download_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓00d24bed-8d13-4f90-b068-52341593a727/download",
"filename": "2-dark-haired_insolation-doc.gz.gpg",
"is_file": true,
"is_message": false,
"is_read": true,
"seen_by": [

"1c914871-a335-44ba-b2ae-da878cbc3630"
],
"size": 179404,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"submission_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/

→˓submissions/00d24bed-8d13-4f90-b068-52341593a727",
"uuid": "00d24bed-8d13-4f90-b068-52341593a727"

}
]

}

56 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

Get a single submission associated with a source

Requires authentication.

GET /api/v1/sources/<source_uuid>/submissions/<submission_uuid>

Response 200 (application/json):

{
"download_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓00d24bed-8d13-4f90-b068-52341593a727/download",
"filename": "2-dark-haired_insolation-doc.gz.gpg",
"is_file": true,
"is_message": false,
"is_read": true,
"seen_by": [
"1c914871-a335-44ba-b2ae-da878cbc3630"

],
"size": 179404,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"submission_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓00d24bed-8d13-4f90-b068-52341593a727",
"uuid": "00d24bed-8d13-4f90-b068-52341593a727"

}

Get all replies associated with a source

Requires authentication.

GET /api/v1/sources/<source_uuid>/replies

Response 200 (application/json):

{
"replies": [
{
"filename": "3-electrocardiographic_lost-and-found-reply.gpg",
"is_deleted_by_source": false,
"journalist_first_name": "",
"journalist_last_name": "",
"journalist_username": "journalist",
"journalist_uuid": "3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"reply_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9/replies/

→˓5d6260ce-cf70-420a-9ca0-250b09d6cc58",
"seen_by": [
"3ae405e0-01bb-41f5-98b6-c4707c5c4b96"

],
"size": 753,
"source_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9",
"uuid": "5d6260ce-cf70-420a-9ca0-250b09d6cc58"

},
{
"filename": "4-electrocardiographic_lost-and-found-reply.gpg",
"is_deleted_by_source": false,

(continues on next page)

11.5. Endpoints 57

SecureDrop Developer Documentation, Release latest

(continued from previous page)

"journalist_first_name": "",
"journalist_last_name": "",
"journalist_username": "journalist",
"journalist_uuid": "3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"reply_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9/replies/

→˓3400b55f-9bfb-4368-b975-0f6950fd5631",
"seen_by": [
"3ae405e0-01bb-41f5-98b6-c4707c5c4b96"

],
"size": 901,
"source_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9",
"uuid": "3400b55f-9bfb-4368-b975-0f6950fd5631"

}
]

}

Get a single reply associated with a source

Requires authentication.

GET /api/v1/sources/<source_uuid>/replies/<reply_uuid>

Response 200 (application/json):

{
"filename": "4-electrocardiographic_lost-and-found-reply.gpg",
"is_deleted_by_source": false,
"journalist_first_name": "",
"journalist_last_name": "",
"journalist_username": "journalist",
"journalist_uuid": "3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"reply_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9/replies/3400b55f-

→˓9bfb-4368-b975-0f6950fd5631",
"seen_by": [

"3ae405e0-01bb-41f5-98b6-c4707c5c4b96"
],
"size": 901,
"source_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9",
"uuid": "3400b55f-9bfb-4368-b975-0f6950fd5631"

}

Download a reply

Requires authentication.

GET /api/v1/sources/<source_uuid>/replies/<reply_uuid>/download

Response 200 will have Content-Type: application/pgp-encrypted and is the content of the PGP encrypted
reply.

An ETag header is also present containing the SHA256 hash of the response data:

"sha256:c757c5aa263dc4a5a2bca8e7fe973367dbd2c1a6c780d19c0ba499e6b1b81efa"

58 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

Note that these are not intended for cryptographic purposes and are present for clients to check that downloads are not
corrupted.

Delete a reply

Requires authentication.

DELETE /api/v1/sources/<source_uuid>/replies/<reply_uuid>

Response 200:

{
"message": "Reply deleted"

}

Add a reply to a source

Requires authentication. Clients are expected to encrypt replies prior to submission to the server. Replies should be
encrypted to the public key of the source.

Including the uuid field in the request is optional. Clients may want to pre-set the uuid so they can track in-flight
messages.

POST /api/v1/sources/<source_uuid>/replies

with the reply in the request body:

{
"uuid": "0bc588dd-f613-4999-b21e-1cebbd9adc2c",
"reply": "-----BEGIN PGP MESSAGE-----[...]-----END PGP MESSAGE-----"
}

Response 201 created (application/json):

{
"message": "Your reply has been stored",
"uuid": "0bc588dd-f613-4999-b21e-1cebbd9adc2c"

}

The returned uuid field is the UUID of the reply and can be used to reference this reply later. If the client set the uuid
in the request, this will have the same value.

Replies that do not contain a GPG encrypted message will be rejected:

Response 400 (application/json):

{
"message": "You must encrypt replies client side"

}

Delete a submission

Requires authentication.

DELETE /api/v1/sources/<source_uuid>/submissions/<submission_uuid>

Response 200:

11.5. Endpoints 59

SecureDrop Developer Documentation, Release latest

{
"message": "Submission deleted"

}

Download a submission

Requires authentication.

GET /api/v1/sources/<source_uuid>/submissions/<submission_uuid>/download

Response 200 will have Content-Type: application/pgp-encrypted and is the content of the PGP encrypted
submission.

An ETag header is also present containing the SHA256 hash of the response data:

"sha256:c757c5aa263dc4a5a2bca8e7fe973367dbd2c1a6c780d19c0ba499e6b1b81efa"

Note that these are not intended for cryptographic purposes and are present for clients to check that downloads are not
corrupted.

Delete a source and all their associated submissions

Requires authentication.

DELETE /api/v1/sources/<source_uuid>

Response 200:

{
"message": "Source and submissions deleted"

}

Delete a source conversation (messages/files/replies) while preserving the source

Requires authentication.

DELETE /api/v1/sources/<source_uuid>/conversation

Response 200:

{
"message": "Source data deleted"

}

Star a source

Requires authentication.

POST /api/v1/sources/<source_uuid>/star

Response 201 created:

{
"message": "Star added"

}

60 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

Unstar a source

Requires authentication.

DELETE /api/v1/sources/<source_uuid>/star

Response 200:

{
"message": "Star removed"

}

11.5.3 Submissions
Get all submissions

Requires authentication. This gets details of all submissions across sources.

GET /api/v1/submissions

Response 200:

{
"submissions": [
{
"download_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0/download",
"filename": "1-dark-haired_insolation-msg.gpg",
"is_file": false,
"is_message": true,
"is_read": true,
"seen_by": [
"1c914871-a335-44ba-b2ae-da878cbc3630"

],
"size": 593,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"submission_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/

→˓submissions/b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0",
"uuid": "b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0"

},
{
"download_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/submissions/

→˓00d24bed-8d13-4f90-b068-52341593a727/download",
"filename": "2-dark-haired_insolation-doc.gz.gpg",
"is_file": true,
"is_message": false,
"is_read": true,
"seen_by": [

"1c914871-a335-44ba-b2ae-da878cbc3630"
],
"size": 179404,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"submission_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/

→˓submissions/00d24bed-8d13-4f90-b068-52341593a727",
(continues on next page)

11.5. Endpoints 61

SecureDrop Developer Documentation, Release latest

(continued from previous page)

"uuid": "00d24bed-8d13-4f90-b068-52341593a727"
}

]
}

11.5.4 Replies
Get all replies

Requires authentication. This gets details of all replies across sources.

GET /api/v1/replies

Response 200:

{
"replies": [
{
"filename": "3-electrocardiographic_lost-and-found-reply.gpg",
"is_deleted_by_source": false,
"journalist_first_name": "",
"journalist_last_name": "",
"journalist_username": "journalist",
"journalist_uuid": "3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"reply_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9/replies/

→˓5d6260ce-cf70-420a-9ca0-250b09d6cc58",
"seen_by": [
"3ae405e0-01bb-41f5-98b6-c4707c5c4b96"

],
"size": 753,
"source_url": "/api/v1/sources/55b96e66-688a-4333-b429-f1a3233b40e9",
"uuid": "5d6260ce-cf70-420a-9ca0-250b09d6cc58"

},
{
"filename": "3-dark-haired_insolation-reply.gpg",
"is_deleted_by_source": false,
"journalist_first_name": "",
"journalist_last_name": "",
"journalist_username": "journalist",
"journalist_uuid": "3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"reply_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704/replies/

→˓285682f8-2bfb-47aa-9889-f9c41a44cebb",
"seen_by": [

"3ae405e0-01bb-41f5-98b6-c4707c5c4b96",
"1c914871-a335-44ba-b2ae-da878cbc3630"

],
"size": 744,
"source_url": "/api/v1/sources/e5a42bdb-1fef-4d66-9876-b2d592f90704",
"uuid": "285682f8-2bfb-47aa-9889-f9c41a44cebb"

}
]

}

62 Chapter 11. Journalist Interface API

SecureDrop Developer Documentation, Release latest

11.5.5 Users
Get a list of all users

Requires authentication.

GET /api/v1/users

Response 200:

{
"users": [
{
"first_name": "Nellie",
"last_name": "Bly",
"username": "nbly",
"uuid": "2b3f05ef-3695-4522-88bd-f124d2e89d01"

},
{
"first_name": "Daniel",
"last_name": "Ellsberg",
"username": "dellsberg",
"uuid": "89eec426-f8c3-4c7a-921f-59ec8fa9fd69"

}
]

}

Get an object representing the current user

Requires authentication.

GET /api/v1/user

Response 200:

{
"is_admin": true,
"last_login": "2018-07-09T20:29:41.696782Z",
"username": "journalist",
"uuid": "a2405127-1c9e-4a3a-80ea-95f6a71e5738",
"first_name": "Bob",
"last_name": "Smith",

}

Mark items that have been seen by the current user

Requires authentication. Records that the current user has seen a reply from another user, or a file or message submitted
by a source.

POST /api/v1/seen

The request body should contain one or more lists of UUIDs representing the conversation items to be marked seen.
The valid list keys are files, messages, and replies. The type of a given submission (file or message) is available
in the responses from endpoints under /submissions; each submission will have is_file and is_message fields.

11.5. Endpoints 63

SecureDrop Developer Documentation, Release latest

{
"files": [
"00d24bed-8d13-4f90-b068-52341593a727"

],
"messages": [
"b7a7b6ca-9a11-4a51-8b59-7e454f6bf8d0"

],
"replies": [
"285682f8-2bfb-47aa-9889-f9c41a44cebb"

]
}

Any of the lists may be omitted, but at least one must be specified. An empty or invalid request will result in a 400
Bad Request response with the following body:

{
"error": "Bad Request",
"message": "Please specify the resources to mark seen."

}

A successful request will result in a 200 OK response with the following body:

{
"message": "resources marked seen"

}

Any submission or reply marked seen will thereafter include the user’s UUID in the seen_by field of responses in-
cluding the item, like /api/v1/submissions or /api/v1/replies.

If a file, message, or reply cannot be found with one of the specified UUIDs, the response will be 404 Not Found
with details in the response body:

{
"error": "Not Found",
"message": "reply not found: 285682f8-2bfb-47aa-9889-f9c41a44cebc"

}

None of the requested items will be marked seen if any of them cannot be found.

11.6 Removed functionality

11.6.1 Flagging sources
Previous versions of the API supported flagging sources for reply, which would generate a reply keypair for the source
upon their next login. This functionality was removed in SecureDrop 2.0.0.

The /api/v1/sources/<source_uuid>/flag endpoint (POST) and the is_flagged property for sources are re-
tained for backwards compatibility, but no longer function. is_flagged is always false.

The endpoint and the is_flagged property will be fully removed from the API in a future release.

64 Chapter 11. Journalist Interface API

CHAPTER

TWELVE

DEVELOPMENT OF SECUREDROP-ADMIN IN THE ADMIN
DIRECTORY

The admin directory in the SecureDrop repository root contains the source of the securedrop-admin script which is
used in Tails to perform various administrative tasks. It is a standalone python module which can be tested on Debian
GNU/Linux stretch with:

python3 bootstrap.py
source .venv3/bin/activate
pip3 install --no-deps --require-hashes -r requirements-dev.txt
tox

A Docker helper bin/dev-shell is provided to simplify the installation and make it portable on various operating
systems. From the admin directory, run bin/dev-shell without any arguments to execute securedrop-admin or
other commands interactively in the container. If this is your first time running bin/dev-shell, it may take several
minutes to build the image.

Note

The SecureDrop repository contains two scripts named dev-shell. admin/bin/dev-shell is used for
securedrop-admin while securedrop/bin/dev-shell is used for the server environment.

Run only flake8 with:

bin/dev-shell tox -e flake8

Run only one test foobar with:

bin/dev-shell tox -e py3 -- -k foobar

Docker has the admin directory mounted from the host into the container, at the same location to avoid any trouble
with hardcoded absolute paths. It runs with the id of the host user so files created in the container are owned by the
host user instead of root. If a script needs root access, it has passwordless sudo permissions.

Convenience Makefile targets are also provided for the most common tasks:

$ make
Makefile for developing and testing securedrop-admin.
Subcommands:

help Print this message and exit.
test Run tox
update-pip-requirements Updates all Python requirements files via pip-compile.

65

SecureDrop Developer Documentation, Release latest

66 Chapter 12. Development of Securedrop-Admin in the Admin Directory

CHAPTER

THIRTEEN

DEVELOPMENT OF SECUREDROPUPDATER IN THE
JOURNALIST_GUI DIRECTORY

The SecureDropUpdater is a tool used by the journalists and admins, this tool helps them to update their SecureDrop
git repository to the latest released tag. It is a GUI tool and it is written using PyQt5 bindings of the Qt framework.
This tool is written using Python3.

13.1 Installing the Dependencies in a Virtual Environment
You can use Python’s built-in venv module to install the dependencies in a virtual environment. From the
journalist_gui directory:

$ python3 -m venv .venv && source .venv/bin/activate
$ pip install --require-hashes -r dev-requirements.txt

The first command will create a virtual environment and activate it. The second command will install the dependencies,
using the exact hashes specified in dev-requirements.txt. Make sure you are using at least Python 3.8.

Note

The Updater GUI does not use a virtual environment on the Tails Workstations. As such, you can only use depen-
dencies present in Tails.

You can run the GUI via:

$ python3 SecureDropUpdater

Note that since the application expects to run in Tails, you should test its functionality in a Tails VM. You can follow
the instructions in the Virtualizing Tails guide to set up your Tails VM.

13.2 To Update the UI Design
The design of the GUI is saved in the journalist_gui/mainwindow.ui file. To update the UI, one has to first install
qtcreator tool in the system. We are currently using 5.10.1 version of Qt for this project.

$ sudo apt install qtcreator python3-pyqt5

If we make any changes to the UI, we will have to use pyuic5 command to update the corresponding Python code.

$ pyuic5 journalist_gui/mainwindow.ui -o journalist_gui/updaterUI.py

67

https://doc.qt.io/

SecureDrop Developer Documentation, Release latest

13.3 Using Resources in the UI
All icons and images for the UI is stored in the journalist_gui/static directory. These are known as resources
for the project. The journalist_gui/resources.qrc file contains the list of current resources for the project. Each
resource needs to be defined inside of a <file></file>.

Example qrc file:

<RCC>
<qresource prefix="/images">

<file>static/securedrop.png</file>
<file>static/securedrop_icon.png</file>

</qresource>
</RCC>

We will have to update the corresponding Python file for any change in this resource file. We can do that using the
following command:

$ pyrcc5 journalist_gui/resources.qrc -o journalist_gui/resources_rc.py

Note

The updaterUI.py and resources_rc.py files are generated by the tools. So, do not make any changes to these
files. Any changes made to these files will be overridden.

Warning

As a reviewer of a PR involving changes to this resource file, you should verify the changes to the file by running
pyrcc5 locally.

13.4 Adding and Running Test Cases
We have Python unit tests in the test_gui.py file. Any change in the actual application code will also require adding
new test cases or updating the old ones. You can run the tests using the following command:

$ python3 test_gui.py

68 Chapter 13. Development of SecureDropUpdater in the journalist_gui Directory

CHAPTER

FOURTEEN

VIRTUAL ENVIRONMENTS: SERVERS

SecureDrop is a multi-server system, and you may need the full server stack available in order to develop and test
some features. To make this easier, the project includes a Vagrantfile that can be used to create two predefined virtual
environments:

• Staging

• Production

This document explains the purpose of, and how to get started working with, each one.

Note

If you plan to alter the configuration of any of these machines, make sure to review the Testing: Configuration Tests
documentation.

14.1 Staging
A compromise between the development and production environments. This configuration can be thought of as iden-
tical to the production environment, with a few exceptions:

• The Debian packages are built from your local copy of the code, instead of installing the current stable release
packages from https://apt.freedom.press.

• The staging environment is configured for direct SSH access so it’s more ergonomic for developers to interact
with the system during debugging.

• The Postfix service is disabled, so OSSEC alerts will not be sent via email.

This is a convenient environment to test how changes work across the full stack.

You should first bring up the VM required for building the app code Debian packages on the staging machines:

make build-debs
make staging
molecule login -s libvirt-staging-focal -h app-staging
sudo -u www-data bash
cd /var/www/securedrop
./manage.py add-admin

To rebuild the local packages for the app code and update the staging VMs:

make build-debs
make staging

69

https://apt.freedom.press

SecureDrop Developer Documentation, Release latest

The Debian packages will be rebuilt from the current state of your local git repository and then installed on the staging
servers.

The web interfaces and SSH are available over Tor. A copy of the Onion URLs for Source and Journalist Interfaces,
as well as SSH access, are written to the Vagrant host’s install_files/ansible-base directory.

To access the Source Interface from Tor Browser, use the v3 onion URL from the file install_files/
ansible-base/app-sourcev3-ths.

To use the Journalist Interface, you will need to modify Tor Browser’s configuration to allow access to an authenticated
onion service:

• First, add the following line to your Tor Browser’s torrc file, typically found at tor-browser_en-US/
Browser/TorBrowser/Data/Tor/torrc:

ClientOnionAuthDir TorBrowser/Data/Tor/onion_auth

• Next, create the onion_auth directory:

mkdir tor-browser_en-US/Browser/TorBrowser/Data/Tor/onion_auth
chmod 0700 tor-browser_en-US/Browser/TorBrowser/Data/Tor/onion_auth

• Finally, copy the file install_files/ansible-base/app-journalist.auth_private to the onion_auth
directory and restart Tor Browser. You should now be able to visit the v3 onion address in app-journalist.
auth_private from Tor Browser.

For working on OSSEC monitoring rules with most system hardening active, update the OSSEC-related configuration
in install_files/ansible-base/staging.yml so you receive the OSSEC alert emails.

Direct SSH access is available for staging hosts, so you can use molecule login -s <scenario> -h
app-staging, where <scenario> is either libvirt-staging-focal or qubes-staging-focal, depending on
your environment.

By default, the staging environments are created with an empty submissions database. If you want to set up a staging
environment with a preexisting submissions database, you can do so using a SecureDrop backup file as follows:

• Create a directory install_files/ansible-base/test-data.

• Copy the backup file to the directory above.

• Define an environmental variable TEST_DATA_FILE whose value is the name of the backup file - for example
sd-backup.tar.gz - and run make staging:

TEST_DATA_FILE="sd-backup.tar.gz" make staging

A staging environment will be created using the submissions and account data from the backup, but ignoring the backup
file’s Tor configuration data.

Note

It is not recommended to use backup data from a live SecureDrop installation in staging, as the backup may contain
sensitive information and the staging environment should not be considered secure.

When finished with the Staging environment, run molecule destroy -s <scenario> to clean up the VMs. If the
host machine has been rebooted since the Staging environment was created, Molecule will fail to find the VM info, as
it’s stored in /tmp. If you use libvirt, run virt-manager and destroy the staging VMs manually, by right-clicking on
the entries and choosing Destroy.

70 Chapter 14. Virtual Environments: Servers

SecureDrop Developer Documentation, Release latest

14.2 Production
This is a production installation with all of the system hardening active, but virtualized, rather than running on hardware.
You will need to use a virtualized Admin Workstation in order to provision these machines.

14.2.1 Switching to the Vagrant libvirt provider
Make sure you’ve already installed Vagrant, as described in the multi-machine setup docs.

Ubuntu 20.04 setup

Install libvirt and QEMU:

sudo apt-get update
sudo apt-get install libvirt-bin libvirt-dev qemu-utils qemu virt-manager
sudo /etc/init.d/libvirt-bin restart

Add your user to the libvirtd group:

sudo addgroup libvirtd
sudo usermod -a -g libvirtd $USER

Install the required Vagrant plugins for converting and using libvirt boxes:

vagrant plugin install vagrant-libvirt
vagrant plugin install vagrant-mutate

Note

If Vagrant is already installed it may not recognize libvirt as a valid provider. In this case, remove Vagrant with
sudo apt-get remove vagrant and reinstall it.

Log out, then log in again. Verify that libvirt is installed and KVM is available:

libvirtd --version
kvm-ok

Debian stable setup

Install Vagrant, libvirt, QEMU, and their dependencies:

sudo apt-get update
sudo apt-get install -y vagrant vagrant-libvirt libvirt-daemon-system qemu-kvm virt-
→˓manager
sudo apt-get install -y ansible rsync
vagrant plugin install vagrant-libvirt
vagrant plugin install vagrant-mutate
sudo usermod -a -G libvirt $USER
sudo systemctl restart libvirtd

Add your user to the kvm group to give it permission to run KVM:

14.2. Production 71

SecureDrop Developer Documentation, Release latest

sudo usermod -a -G kvm $USER
sudo rmmod kvm_intel
sudo rmmod kvm
sudo modprobe kvm
sudo modprobe kvm_intel

Log out, then log in again. Verify that libvirt is installed and your system supports KVM:

sudo libvirtd --version
[`egrep -c 'flags\s*:.*(vmx|svm)' /proc/cpuinfo` -gt 0] && \
echo "KVM supported!" || echo "KVM not supported..."

Set libvirt as the default provider

Set the default Vagrant provider to libvirt:

echo 'export VAGRANT_DEFAULT_PROVIDER=libvirt' >> ~/.bashrc
export VAGRANT_DEFAULT_PROVIDER=libvirt

Convert Vagrant boxes to libvirt

Convert the VirtualBox images for Focal from virtualbox to libvirt format:

vagrant box add --provider virtualbox bento/ubuntu-20.04
vagrant mutate bento/ubuntu-20.04 libvirt

You can now use the libvirt-backed VM images to develop against the SecureDrop multi-machine environment.

14.2.2 Install from an Admin Workstation VM
In SecureDrop, admin tasks are performed from a Tails Admin Workstation. You should configure a Tails VM in order
to install the SecureDrop production VMs by following the instructions in the Virtualizing Tails guide.

Once you’re prepared the Admin Workstation, you can start each VM:

molecule create -s libvirt-prod-focal

At this point you should be able to SSH into both app-prod and mon-prod with the user vagrant and the password
vagrant.

From here you can follow the :server configuration instructions to test connectivity and prepare the servers.

These instructions will have you generate SSH keys and use ssh-copy-id to transfer the key onto the servers. By
default, the Vagrant boxes authorize a publicly provided SSH keypair, which you can download on Tails and import
via ssh-add instead of generating a new SSH keypair.

Note

If you have trouble SSHing to the servers from Ansible, remember to remove any old ATHS files in
install_files/ansible-base.

Now from your Admin Workstation, set up the administration environment with:

cd ~/Persistent/securedrop
./securedrop-admin setup

72 Chapter 14. Virtual Environments: Servers

https://docs.securedrop.org/en/stable/servers.html#test-connectivity
https://github.com/hashicorp/vagrant/tree/master/keys

SecureDrop Developer Documentation, Release latest

If you want to enable HTTPS for the source interface, you can generate a test CA cert, server key, and server cert using
the following commands:

sudo apt-get install make
make self-signed-https-certs

This will generate the files securedrop_source_onion.ca, securedrop_source_onion.crt, and
securedrop_source_onion.key in the install_files/ansible-base directory, ready for use in the next
step.

Important

The self-signed certificates should not be used in a live instance. They are provided for development and testing
purposes only.

To proceed with a full install, you will need, at a minimum:

• The IP addresses of the two virtualized servers, app-prod and mon-prod. You can obtain them via virsh
domifaddr libvirt-prod-focal_app-prod and virsh domifaddr libvirt-prod-focal_mon-prod.

• The username and sudo password (both default to vagrant for both servers)

• A Submission Public Key. securedrop-admin will reject the key included with the development environment.
For testing purposes only, you can create a new keypair within the Tails VM.

• An OSSEC Alert Public Key. We recommend using your own public key if you intend to test OSSEC email
functionality.

Configure and install SecureDrop on the server VMs using the commands:

./securedrop-admin sdconfig

./securedrop-admin install

After the installation is complete, you can configure your Admin Workstation to SSH into each VM via:

./securedrop-admin tailsconfig

securedrop-admin will write the SecureDrop configuration to ~/Persistent/securedrop/install_files/
ansible-base/group_vars/all/site-specific. To simplify subsequent installs, you may wish to make a copy
of this file, as well as the two required public keys, in a directory in ~/Persistent or outside the Tails VM.

14.2. Production 73

SecureDrop Developer Documentation, Release latest

74 Chapter 14. Virtual Environments: Servers

CHAPTER

FIFTEEN

VIRTUAL ENVIRONMENTS: ADMIN WORKSTATION

SecureDrop uses Tails for the Admin Workstation environment. In order to perform a fully virtualized production
install, you will need to first set up Tails in a virtual machine.

Note

For the instructions that follow, you need to download the most recent Tails ISO from the Tails website.

Only libvirt-based virtualization, on a Linux host, is supported.

15.1 Linux
For the Linux instructions, you will use KVM/libvirt to create a Tails VM that you can use to install SecureDrop on
app-prod and mon-prod.

15.1.1 Create a VM using virt-manager
Follow the Tails virt-manager instructions for running Tails from a USB image. Then proceed with booting to the USB
drive, and configure Persistent Storage.

We recommend cloning the SecureDrop repository into the persistent volume for testing and development, instead of
attempting to mount a folder from the host operating system.

75

https://tails.boum.org
https://tails.boum.org/doc/advanced_topics/virtualization/virt-manager/index.en.html#index4h1
https://tails.boum.org/doc/persistent_storage/index.en.html

SecureDrop Developer Documentation, Release latest

76 Chapter 15. Virtual Environments: Admin Workstation

CHAPTER

SIXTEEN

VIRTUAL ENVIRONMENTS: USING QUBES

SecureDrop currently uses Ubuntu Focal as its server OS. The instructions below cover setting up a SecureDrop staging
environment using Focal under Qubes.

It is assumed that you have an up-to-date Qubes R4.2 installation on a compatible laptop, with at least 32GB RAM and
60GB free disk space. The SecureDrop server VMs run Tor locally instead of using sys-whonix, so the system clock
must be set accurately for Tor to start and hidden services to be available.

16.1 Overview
Follow the Qubes platform instructions in Setting Up the Development Environment to create a Debian 11 sd-dev
Standalone VM. Once done, we’ll create three new Standalone (HVM) Qubes VMs for use with staging:

• sd-staging-base-focal, a base VM for cloning reusable staging VMs

• sd-staging-app-base-focal, a base VM for the SecureDrop Application Server

• sd-staging-mon-base-focal, a base VM for the SecureDrop Monitor Server

16.2 Download Ubuntu server ISO
On sd-dev, download the latest Ubuntu server ISO for Focal, along with corresponding checksum and signature files.
See the installation docs for detailed instructions. If you opt for the command line instructions, omit the torify
prepended to the curl command.

16.3 Create the base VM
We’re going to build a single, minimally configured Ubuntu VM. Once it’s bootable, we’ll clone it for the application
and monitoring VMs.

In dom0, do the following:

qvm-create sd-staging-base-focal --class StandaloneVM --property virt_mode=hvm --label␣
→˓green
qvm-volume extend sd-staging-base-focal:root 20g
qvm-prefs sd-staging-base-focal memory 2000
qvm-prefs sd-staging-base-focal maxmem 2000
qvm-prefs sd-staging-base-focal kernel ''

The commands above will create a new StandaloneVM, expand the storage space and memory available to it, as well
as disable the integrated kernel support. The SecureDrop install process will install a custom kernel.

77

https://docs.securedrop.org/en/stable/create_usb_boot_drives.html#download-the-ubuntu-installation-media

SecureDrop Developer Documentation, Release latest

16.4 Boot into installation media
In dom0:

qvm-start sd-staging-base-focal --cdrom=sd-dev:$ISO_PATH

where ISO_PATH is the full path to the Ubuntu ISO previously downloaded on sd-dev.

Next, choose Install Ubuntu.

For the most part, the install process matches the hardware install flow, with a few exceptions:

• Subnet: 10.137.0.0/24

• Address: use value returned by qvm-prefs sd-staging-base-focal ip

• Gateway: use value returned by qvm-prefs sd-staging-base-focal visible_gateway

• Name servers: 10.139.1.1,10.139.1.2

• Search domains: should be left blank

• Your server’s name: sd-staging-base-focal

Make sure to configure LVM and use Virtual disk 1 (xvda 20.0GB Xen Virtual Block device) when asked for a target
partition during installation. It should be the default option.

You’ll be prompted to add a “regular” user for the VM: this is the user you’ll be using later to SSH into the VM. We’re
using a standardized name/password pair: sdadmin/securedrop.

Once installation is done, let the machine shut down and then restart it with

qvm-start sd-staging-base-focal

in dom0. You should get a login prompt.

16.5 Initial VM configuration
Before cloning this machine, we’ll update software to reduce provisioning time on the staging VMs. In the new
sd-staging-base-focal VM’s console, do:

sudo apt update
sudo apt dist-upgrade -y

Before we continue, let’s allow your user to sudo without their password. Edit /etc/sudoers using visudo to make
the sudo group line look like

%sudo ALL=(ALL) NOPASSWD: ALL

Finally, update the machine’s Grub configuration to use a consistent Ethernet device name across kernel versions. Edit
the file /etc/default/grub, changing the line:

GRUB_CMDLINE_LINUX=""

to

GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

When initial configuration is done, run qvm-shutdown sd-staging-base-focal to shut it down.

78 Chapter 16. Virtual Environments: Using Qubes

https://docs.securedrop.org/en/stable/servers.html#perform-the-installation

SecureDrop Developer Documentation, Release latest

16.6 Clone VMs
We’re going configure the VMs to use specific IP addresses, which will make various routing issues easier later. We’ll
also tag the VMs for management by the sd-dev VM. Doing so will require Qubes RPC policy changes, documented
below. Run the following in dom0:

qvm-clone sd-staging-base-focal sd-staging-app-base-focal
qvm-clone sd-staging-base-focal sd-staging-mon-base-focal
qvm-prefs sd-staging-app-base-focal ip 10.137.0.50
qvm-prefs sd-staging-mon-base-focal ip 10.137.0.51
qvm-tags sd-staging-app-base-focal add created-by-sd-dev
qvm-tags sd-staging-mon-base-focal add created-by-sd-dev

Now start both new VMs:

qvm-start sd-staging-app-base-focal
qvm-start sd-staging-mon-base-focal

On the consoles which eventually appear, you should be able to log in with sdadmin/securedrop.

16.6.1 Configure cloned VMs
We’ll need to fix each machine’s idea of its own IP. In the console for each machine, edit /etc/netplan/
00-installer-config.yaml to update the addresses entry with the machine’s IP.

Edit /etc/hosts on each host to include the hostname and IP for itself. Use app-staging and mon-staging as
appropriate.

Next, on each host edit /etc/hostname to reflect the machine’s name.

Halt each machine, then restart each from dom0. The prompt in each console should reflect the correct name of the
VM. Confirm you have network access by running ping freedom.press. It should show no errors.

16.6.2 Inter-VM networking
We want to be able to SSH connections from sd-dev to these new standalone VMs. In order to do so, we have to
adjust the firewall rules. Make the following changes on fedora-dvm, which is the template for sys-firewall under
a default setup.

Note

These changes to the firewall rules will also apply to all other DispVMs based off fedora-dvm, and are meant for
a testing/development machine only.

Let’s get the IP address of sd-dev. On dom0:

qvm-prefs sd-dev ip

Get a shell on fedora-dvm. Create or edit /rw/config/qubes-firewall-user-script, to include the following:

sd_dev="<sd-dev-addr>"
sd_app="10.137.0.50"
sd_mon="10.137.0.51"

iptables -I FORWARD 2 -s "$sd_dev" -d "$sd_app" -j ACCEPT
(continues on next page)

16.6. Clone VMs 79

SecureDrop Developer Documentation, Release latest

(continued from previous page)

iptables -I FORWARD 2 -s "$sd_dev" -d "$sd_mon" -j ACCEPT
iptables -I FORWARD 2 -s "$sd_app" -d "$sd_mon" -j ACCEPT
iptables -I FORWARD 2 -s "$sd_mon" -d "$sd_app" -j ACCEPT

Shut down fedora-dvm, then restart sys-firewall.

Now from sd-dev, you should be able to do

ssh sdadmin@10.137.0.50

and log in with the password securedrop.

Tip

See the official Qubes guide on configuring inter-VM networking for more details.

16.6.3 SSH using keys

Tip

You likely already have an SSH keypair configured for access to GitHub. If not, create one with ssh-keygen -b
4096 -t rsa. The configuration logic will use the key at ~/.ssh/id_rsa to connect to the VMs.

Later we’ll be using Ansible to provision the application VMs, so we should make sure we can SSH between those
machines without needing to type a password. On sd-dev:

ssh-copy-id sdadmin@10.137.0.50
ssh-copy-id sdadmin@10.137.0.51

Confirm that you’re able to ssh as user sdadmin from sd-dev to both IP addresses without a password.

16.7 SecureDrop Installation
We’re going to configure sd-dev to build the SecureDrop .deb files, then we’re going to build them, and provision
sd-staging-app and sd-staging-mon. Follow the instructions in the developer documentation to set up the devel-
opment environment.

Once finished, build the Debian packages for installation on the staging VMs:

make build-debs

16.8 Managing Qubes RPC for Admin API capability
We’re going to be running Qubes management commands on sd-dev, which requires some additional software. Install
it with

sudo apt install qubes-core-admin-client

You’ll need to grant the sd-dev VM the ability to create other VMs, by editing the Qubes RPC policies in dom0. Here
is an example of a permissive policy, sufficient to grant sd-dev management capabilities over VMs it creates. The
lines below should be inserted at the beginning of their respective policy files, before other more general rules:

80 Chapter 16. Virtual Environments: Using Qubes

https://www.qubes-os.org/doc/firewall/#enabling-networking-between-two-qubes

SecureDrop Developer Documentation, Release latest

/etc/qubes/policy.d/include/admin-local-rwx:
sd-dev @tag:created-by-sd-dev allow target=@adminvm

/etc/qubes/policy.d/include/admin-global-rwx:
sd-dev @adminvm allow target=@adminvm
sd-dev @tag:created-by-sd-dev allow target=@adminvm

Tip

See the Qubes documentation for details on leveraging the Admin API.

16.9 Creating staging instance
After creating the StandaloneVMs as described above:

• sd-dev

• sd-staging-base-focal

• sd-staging-app-base-focal

• sd-staging-mon-base-focal

And after building the SecureDrop .debs, we can finally provision the staging environment:

make staging

The commands invoke the appropriate Molecule scenario for your choice of focal. You can also run constituent
Molecule actions directly, rather than using the Makefile target:

molecule create -s qubes-staging-focal
molecule converge -s qubes-staging-focal
molecule test -s qubes-staging-focal

That’s it. You should now have a running, configured SecureDrop staging instance running on your Qubes machine.
For day-to-day operation, you should run sd-dev in order to make code changes, and use the Molecule commands
above to provision staging VMs on-demand. To remove the staging instance, use the Molecule command:

molecule destroy -s qubes-staging-focal

16.10 Accessing the Journalist Interface (Staging) in Whonix-based
VMs

Warning

These instructions are only appropriate for a staging setup and should not be used to access a production instance
of SecureDrop.

To access the Source and Journalist Interfaces (staging) in a Debian- or Fedora-based VM, follow the instructions here.

To use a Whonix-based VM, the following steps are required to configure access to the Journalist Interface (staging).

16.9. Creating staging instance 81

https://www.qubes-os.org/doc/admin-api/

SecureDrop Developer Documentation, Release latest

16.10.1 In sd-dev
You will have to copy the app-journalist.auth_private file (located in your sd-dev VM in
${SECUREDROP_HOME}/install_files/ansible-base and generated after a successful staging build) into
your Whonix gateway VM. On standard Qubes installations this VM is called sys-whonix.

To do this, in an sd-dev terminal, run the command:

qvm-copy ${SECUREDROP_HOME})/install_files/ansible-base/app-journalist.auth_private

and select sys-whonix in the resulting permissions dialog.

16.10.2 In the Whonix Gateway
Open a terminal in sys-whonix and create a directory with appropriate ownership and permissions, then move your
credential file there:

sudo mkdir -p /var/lib/tor/onion_auth
sudo mv ~/QubesIncoming/sd-dev/app-journalist.auth_private /var/lib/tor/onion_auth
sudo chown --recursive debian-tor:debian-tor /var/lib/tor/onion_auth

Next, edit the Tor configuration so it recognizes the directory containing your credentials:

sudo vi /usr/local/etc/torrc.d/50_user.conf

In this file, enter the following:

ClientOnionAuthDir /var/lib/tor/onion_auth

Save and close the file. Finally, reload Tor by clicking Qubes Application Menu > sys-whonix > Reload Tor

At this point, you should be able to access the Journalist Interface (staging) in a Whonix VM that uses sys-whonix
as its gateway.

Note that you will have to replace the app-journalist.auth_private file and reload Tor on the Whonix gateway
every time you rebuild the staging environment.

82 Chapter 16. Virtual Environments: Using Qubes

CHAPTER

SEVENTEEN

UPGRADE TESTING USING MOLECULE

The SecureDrop project includes Molecule scenarios for developing and testing against multi-server configurations,
including a scenario to simulate the process of upgrading an existing system. This document explains how to work
with this scenario to test features that make potentially release-breaking changes such as database schema updates.

The Molecule upgrade scenario sets up a local apt server, to imitate how new package versions will be installed in
production. You’ll need to use a virtualized Admin Workstation to configure the base server VMs with the current
stable version, prior to testing the upgrade.

Note

The upgrade scenario uses QEMU/KVM via Vagrant’s libvirt provider. If you haven’t already done so, you’ll need
to set up the libvirt provider before proceeding. For more information, see Switching to the Vagrant libvirt provider.

17.1 Upgrade testing using locally-built packages
First, create prod VMs for use with the current stable version. These machines will be upgraded with newer, locally
built deb packages in a subsequent step.

molecule create -s libvirt-prod-focal

Next, boot your Admin Workstation VM and proceed with a full install on these VMs, via ./securedrop-admin
install. Make sure to run ./securedrop-admin tailsconfig to finalize the installation.

Next, build the app code packages and create the environment:

make build-debs
make upgrade-start

The playbook will create a local apt server on your host machine, and serve the locally built deb packages from that
local endpoint. In order to add the local apt server to the VMs, switch back to the Admin Workstation and run:

source admin/.venv3/bin/activate
cd install_files/ansible-base
ansible-playbook -vv --diff securedrop-apt-local.yml

Both VMs will now be able to be able to view newer, locally built packages. To confirm:

ssh app

From the Application Server:

83

SecureDrop Developer Documentation, Release latest

apt-cache policy securedrop-app-code

The installed package version should match the latest stable version, but the locally built package with higher version
should be available as a candidate for installation.

17.2 Upgrade testing using apt-test.freedom.press
You can also evaluate packages on the https://apt-test.freedom.press/ repository. As above, create prod VMs and con-
figure them via the Admin Workstation. After installation, you can enable the apt-test repo like so:

source admin/.venv3/bin/activate
cd install_files/ansible-base
ansible-playbook -vv --diff securedrop-qa.yml

Then, log into the Application Server:

ssh app
apt-cache policy securedrop-config

The installed package version should match the latest stable version, with the locally built package of a higher version
available as a candidate for installation.

84 Chapter 17. Upgrade Testing using Molecule

https://apt-test.freedom.press/

CHAPTER

EIGHTEEN

DATABASE MIGRATIONS

SecureDrop uses Alembic for database schema migrations. This guide is not a complete explanation of what alembic
is or how it is used, so the original documentation should be read.

18.1 Migration Files
In the securedrop/ directory, the file alembic.ini contains the configuration needed to run alembic commands,
and the directory alembic/ contains the Python code that executes migrations.

The directory looks like this.

.
alembic

env.py
script.py.mako
versions

15ac9509fc68_init.py
faac8092c123_enable_security_pragmas.py

alembic.ini

The subdirectory versions/ individual migrations that are generated by alembic. In the example above, there are two
migrations. alembic orders these migrations based off of values in the Python files, not off any sort of lexicographic
ordering. The file faac8092c123_enable_security_pragmas.py has a module-level documentation string that
specifies that it comes after 15ac9509fc68_init.py as well as variables used by alembic that specify the ordering
of migrations.

18.2 Deployment
Database migrations are automatically applied to production instances via the command alembic upgrade head in
the postinst script in the securedrop-app-code Debian package. You do not need to worry about when or how
these migrations are applied.

18.3 Developer Workflow

18.3.1 Updating the Models
When you want to modify the database schema, you need to add adjust the models in the file models.py. All indices,
constraints, or other metadata about the scheme needs to be in this file. The development server creates tables directly
from the subclasses of db.Model so that they are available for manual and automated testing.

85

https://alembic.sqlalchemy.org/en/latest/

SecureDrop Developer Documentation, Release latest

18.3.2 Creating Migrations
Once you are satisfied with your new model, alembic can auto-generate migrations using SQLAlchemy metadata and
comparing it to the schema of an up-to-date SQLite database. To generate a new migration use the following steps.

cd securedrop/
./bin/dev-shell
source bin/dev-deps
maybe_create_config_py
./bin/new-migration 'my migration message'

This will output a new migration into alembic/versions/. You will need to verify that this migration produced the
desired output. While still in the dev-shell, you can run the following command to see an output of the SQL that
will be generated.

alembic upgrade head --sql

18.3.3 Unit Testing Migrations
The test suite already comes with a test runner (test_alembic.py) that runs a series of checks to ensure migration’s
upgrade and downgrade commands are idempotent and don’t break the database. The test runner uses dynamic module
import to iterate through all the migrations. You will need to create a python module in the tests/migrations/
directory. You module MUST be named migration_<revision identifier>.py. For example, if your revision is
named 15ac9509fc68_init.py, your test module will be named migration_15ac9509fc68.py. Example modules
for the first two revisions are shown below.

tests/migrations/
__init__.py
migration_15ac9509fc68.py
migration_faac8092c123.py

Your module MUST contain the following classes with the following attributes.

class UpgradeTester:

def __init__(self, config):
'''This function MUST accept an argument named `config`.
You will likely want to save a reference to the config in your
class so you can access the database later.

'''
self.config = config

def load_data(self):
'''This function loads data into the database and filesystem. It is
executed before the upgrade.

'''
pass

def check_upgrade(self):
'''This function is run after the upgrade and verifies the state
of the database or filesystem. It MUST raise an exception if the
check fails.

'''
pass

(continues on next page)

86 Chapter 18. Database Migrations

SecureDrop Developer Documentation, Release latest

(continued from previous page)

class DowngradeTester:

def __init__(self, config):
'''This function MUST accept an argument named `config`.
You will likely want to save a reference to the config in your
class so you can access the database later.

'''
self.config = config

def load_data(self):
'''This function loads data into the database and filesystem. It is
executed before the downgrade.

'''
pass

def check_downgrade(self):
'''This function is run after the downgrade and verifies the state
of the database or filesystem. It MUST raise an exception if the
check fails.

'''
pass

Your migration test needs to load data that covers all edge cases such as potentially broken foreign keys or columns
with unexpected content.

Additionally, your test MUST NOT import anything from the models module as this will not accurately test your
migration, and it will likely break during future code changes. In fact, you should use as few dependencies as possible
in your test including other securedrop code as well as external packages. This may be a rather annoying requirement,
but it will make the tests more robust against future code changes.

18.3.4 Release Testing Migrations
In order to ensure that migrations between from the previous to current version of SecureDrop apply cleanly in
production-like instances, we have a helper script that is designed to load semi-randomized data into the database.
You will need to modify the script loaddata.py to include sample data. This sample data should intentionally in-
clude edge cases that might behave strangely such as data whose nullability is only enforced by the application or
missing files.

During QA, the release manager should follow these steps to test the migrations.

1. Checkout the previous SecureDrop release

2. Build Debian packages locally

3. Provision staging VMs

4. vagrant ssh app-staging

5. sudo -u www-data bash

6. cd /var/www/securedrop && ./loaddata.py

7. Checkout the release candidate

8. Re-provision the staging VMs

18.3. Developer Workflow 87

SecureDrop Developer Documentation, Release latest

9. Check that nothing went horribly wrong

88 Chapter 18. Database Migrations

CHAPTER

NINETEEN

INTERNATIONALIZATION (I18N)

SecureDrop is translated into a number of languages. We use a web-based collaborative translation platform called
Weblate to make it easier. Under the hood, all translation is done using GNU gettext.

With gettext, text to be translated is specially marked in source code. A Python example:

if not (msg or fh):
flash(gettext("You must enter a message or choose a file to submit."), "error")
return redirect(url_for('main.lookup'))

In this code, the string You must enter a message or choose a file to submit. can be automatically ex-
tracted for translation. The gettext function to which it is passed is used as a marker by pybabel or similar tools to
collect the strings to be translated and store them into a .pot file at securedrop/translations/messages.pot. For
instance:

#: source_app/main.py:111
msgid "You must enter a message or choose a file to submit."
msgstr ""

The .pot file serves as a template for all the language-specific .po files, which are where Weblate stores the con-
tributed translations. For each language to be translated, a directory is created, such as securedrop/translations/
fr_FR, and populated with a .po file derived from the template. For instance, securedrop/translations/fr_FR/
LC_MESSAGES/messages.po is almost identical to securedrop/translations/messages.pot except for the ms-
gstr fields, which will contain the French translations, e.g.:

#: source_app/main.py:111
msgid "You must enter a message or choose a file to submit."
msgstr "Vous devez saisir un message ou sélectionner un fichier à envoyer."

There’s one last type of file in the gettext system, a machine-readable version of the .po translations called a .mo file.
Applications use these to get translations at runtime. The .po files are compiled to .mo files when the SecureDrop
package is built.

The desktop icons installed on SecureDrop workstations are also translated. The icon templates are in the
install_files/ansible-base/roles/tails-config/templates directory. Their labels are collected in the
desktop.pot file and translated in the corresponding .po files in the same directory (fr.po, de.po etc.). All transla-
tions are merged from the *.j2.in files into the corresponding *.j2 file and committed to the SecureDrop repository.
They are then installed when configuring Tails with the tasks/create_desktop_shortcuts.yml tasks.

We don’t expect translators to deal with all these files directly. Translation happens on our Weblate server, which is
configured to use a fork of the main SecureDrop repository.

As string changes are merged into the develop branch in the main SecureDrop repository, the changes will automat-
ically appear in Weblate, and translation can begin. Translation and review can take place continuously, at any time.
Translations for supported languages reviewed and finalized during the release process.

89

https://weblate.securedrop.org/
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/
https://babel.pocoo.org/en/latest/
https://www.gnu.org/software/gettext/manual/gettext.html#index-files_002c-_002epot
https://www.gnu.org/software/gettext/manual/gettext.html#index-files_002c-_002epot
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://www.gnu.org/software/gettext/
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://www.gnu.org/software/gettext/manual/gettext.html#MO-Files
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://www.gnu.org/software/gettext/manual/gettext.html#MO-Files
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://weblate.securedrop.org/
https://github.com/freedomofpress/securedrop
https://github.com/freedomofpress/securedrop

SecureDrop Developer Documentation, Release latest

19.1 What languages are available where?
• All languages translated in Weblate are present in the securedrop/translations directory.

• Supported languages are listed in the supported_locales object in the i18n.json file.

• Those languages that are both present and supported are available for administrators to configure in
securedrop-admin sdconfig.

• Those languages that are both configured and available on the Application Server are usable for users to select.

19.2 Development tasks

19.2.1 Add a new language
See How to add a new language to SecureDrop.

However, SecureDrop only supports a subset of all the languages being worked on in Weblate. New languages are
supported according to the Policy on Supported Languages.

19.2.2 Update strings to be translated
Whenever strings are modified in the SecureDrop source, whether in Python code, HTML templates, or desktop icon
labels, the translation files should also be updated by running make extract-strings in the root of the SecureDrop
working copy.

The extract-strings target gathers source strings, then updates the .pot files for the SecureDrop server code and
the desktop icons. (This step is enforced by CI, which will fail if you skip it.)

After running make extract-strings, carefully review the output of git diff. Check securedrop/messages.
pot first for updated strings, looking for problems like:

• overly idiomatic English

• fragmented text, such as pieces of a sentence intended to be concatenated together, which can be difficult to
translate

• messages that are marked with plain gettext and contain plurals based on numeric placeholder variables – these
should generally be marked with ngettext so that they can be translated properly in languages with complex
plural forms

Then review the messages.po of one existing translation. There is no need to review multiple languages’ .po files
because they are processed in the same way.

Commit and push these changes for review along with your source changes. See Translation Responsibilities for the
complete workflow.

Verify translations

Content review is the responsibilty of Localization Lab and their reviewers, in Weblate’s review process. Security
review of translations, primarily checking for malicious HTML or interpolation not caught by Weblate’s checks, is the
responsibility of SecureDrop maintainers, especially the localization manager and release manager for a given release.

SecureDrop web interfaces (securedrop/securedrop)

After a translation is compiled, the web page in which it appears can be verified visually by starting the Se-
cureDrop development servers and navigating via http://localhost:8080 for the source interface or http://
localhost:8081 for the journalist interface. You can start the development servers with:

90 Chapter 19. Internationalization (i18n)

https://github.com/freedomofpress/securedrop/blob/develop/securedrop/i18n.json
https://weblate.securedrop.org/
https://www.gnu.org/software/gettext/manual/gettext.html#index-files_002c-_002epot

SecureDrop Developer Documentation, Release latest

$ make dev

The translations can be checked automatically by running the SecureDrop page layout tests:

$ export PAGE_LAYOUT_LOCALES="en_US,fr_FR" # may be set to any supported languages
$ make test TESTFILES=tests/functional/pageslayout
[...]
tests/pageslayout/test_journalist.py::TestJournalistLayout::test_account_edit_hotp_
→˓secret[en_US] PASSED
tests/pageslayout/test_journalist.py::TestJournalistLayout::test_account_edit_hotp_
→˓secret[fr_FR] PASSED
[...]

Note

if unset, PAGE_LAYOUT_LOCALES defaults to en_US (US English) and ar (Arabic).

After running the tests, screenshots for each locale are available in securedrop/tests/pageslayout/
screenshots/<locale>, e.g. securedrop/tests/pageslayout/screenshots/fr_FR. Screenshot filenames
can be found in the tests that created them, in securedrop/tests/pageslayout/test_journalist.py or
securedrop/tests/pageslayout/test_source.py.

Desktop icons (securedrop/desktop)

The translated templates for the desktop icons are:

• install_files/ansible-base/roles/tails-config/templates/desktop-journalist-icon.j2

• install_files/ansible-base/roles/tails-config/templates/desktop-source-icon.j2

Check that each of them contains a Name line for each of SecureDrop’s supported locales.

If there have been new changes to the securedrop/desktop component, CI will fail on the pull request from We-
blate with a warning to run make update-desktop-files. Run this command locally and push the changes to the
weblate-fpf/securedrop fork, and CI should pass.

19.2.3 Update Weblate screenshots
You can use the script securedrop/upload_screenshots.py to update UI screenshots that are used to illustrate
strings in Weblate. The script depends on the existence of up-to-date layout test results, which you can generate using
this command in the base directory:

$ LOCALES=en_US make translation-test

Inspect the screenshots in the directory securedrop/tests/pageslayout/screenshots/en_US and make sure
that their content corresponds to the expected version of the codebase.

Obtain your API key in Weblate. Export the token to the environment variable WEBLATE_API_TOKEN. You can now
run this command to perform an upload:

$ securedrop/upload-screenshots.py

If new screenshots were added as part of this run, make sure to associate them with relevant strings in Weblate, which
you can do from the screenshots list.

19.2. Development tasks 91

https://weblate.securedrop.org/accounts/profile/#api
https://weblate.securedrop.org/screenshots/securedrop/securedrop/

SecureDrop Developer Documentation, Release latest

19.3 Release Management

19.3.1 Two weeks before the release: string freeze

Note

If both a Localization Manager and a deputy are assigned for this release, consider pairing on this ceremony, both
for knowledge-sharing and so that the intermediate pull requests can be reviewed and merged promptly.

When features for a new SecureDrop release are frozen, so are the source strings. The localization manager should
apply any source-string suggestions that have been made by translators before the release branch has been cut, since
only translations will be updated for release candidates and the final release.

Then, the localization manager for the release will:

• Update Weblate screenshots so translators can see new or modified source strings in context.

• Add a Weblate announcement for the securedrop/securedrop component with the translation timeline for
the release.

– Important: Make sure the Notify users box is checked, so that translators receive an email alert.

– You can view a history of past announcements in Weblate’s Django admin panel, or use this template:

Translation for the SecureDrop X.Y.Z release has begun. If you have suggestions for source
strings, please get them to us by YYYY-MM-DD. Translation will end on YYYY-MM-DD.

– Set the Expiry date to release day itself (the day after the translation deadline).

• Remind all developers about the string freeze in Gitter, for example using this template:

Hello! We’ve just opened translations for the upcoming SecureDrop 2.3.0 release. If you have sug-
gestions for source strings, please get them to us by 2022-03-20. Translation will end on 2022-03-27.

Translations are done using Weblate (https://weblate.securedrop.org/projects/securedrop/
securedrop/). If you haven’t used it before, <https://developers.securedrop.org/en/latest/translations.
html> has instructions on how to get started.

• Update Localization Lab via the SecureDrop Coordination channel in the TCU Mattermost.

• During the feedback period, monitor Weblate comments and suggestions, and open a pull request for every source
string suggestion coming from translators.

Remember that supported languages are the priority during this period. That is, while translation contributions are
welcome for all languages, the pre-release goal is to keep the current set of supported languages at 100% translation in
Weblate. Localization Lab can marshal individual translators to help meet this goal.

19.3.2 During QA
Review, merge, and backport Translations update from Weblate pull requests at most once before each release
candidate is cut. Coordinate with the release manager.

19.3.3 Release day
Prior to cutting the final release, the localization manager must:

• Review, merge, and backport the final Translations update from Weblate pull request.

• Update the documentation screenshots.

• Provide translator credits to add to the SecureDrop release announcement.

92 Chapter 19. Internationalization (i18n)

https://weblate.securedrop.org/projects/securedrop/securedrop/#announcement
https://weblate.securedrop.org/admin/trans/announcement/
https://gitter.im/freedomofpress/securedrop
https://weblate.securedrop.org/projects/securedrop/securedrop/
https://weblate.securedrop.org/projects/securedrop/securedrop/
https://developers.securedrop.org/en/latest/translations.html
https://developers.securedrop.org/en/latest/translations.html
https://community.internetfreedomfestival.org/community/channels/securedrop-coordination
https://wiki.digitalrights.community/index.php?title=TCU_Mattermost

SecureDrop Developer Documentation, Release latest

Then, post-release, either same day or day-after, the localization manager should:

• Remove the Weblate announcement about this release’s translation timeline (if you set an end-date on the original
announcement, this may happen automatically)

• Update the tracking spreadsheet with supported languages’ current translation and review coverage. File a ticket
for each new language due either (a) consideration for new support, (b) probation for dropping coverage, or (c)
revocation of support.

19.3.4 Translator credits
Correct acknowledgment of translators’ contributions is important, so Weblate makes it easy to list the translators who
have contributed in a specific period or at any point in the project’s history. For example, the Communications Manager
for a release can generate a “Credits” report since the date of the last minor (X.Y.0) release and copy-paste it into the
release notes.

19.4 Weblate administration

Note

The privilege escalation workflow is different for code maintainers and translation maintainers.

A translation admin has special permissions on Weblate and the repositories. When someone is willing to become an
admin, a thread is started on Gitter. If there is consensus after a week, the permissions of the new admin are elevated.
If there is not yet consensus, a public vote is organized among the current admins.

The privileges of an admin who has not been active for six months or more are revoked, but they can apply again at
any time.

The community of SecureDrop translators works very closely with the SecureDrop developers and some of them par-
ticipate in both groups. However, the translator community has a different set of rules and permissions, and therefore
independent policies from SecureDrop itself.

19.4.1 Admin permissions
The full set of admin permissions can be granted at:

• https://weblate.securedrop.org/admin/weblate_auth/user/ (grant staff and superuser status)

• https://github.com/freedomofpress/securedrop-i18n (make sure that the user has commit access)

19.4.2 Granting reviewer privileges in Weblate
• Visit https://weblate.securedrop.org/admin/weblate_auth/user/.

• Click on the user name.

• In the Groups block:

– Select Localizationlab in the Available groups list and click on the right arrow to move it to
the Chosen groups list.

– Select Users in the Chosen groups list and click on the left arrow to remove it.

19.4. Weblate administration 93

https://weblate.securedrop.org/projects/securedrop/securedrop/#announcement
https://docs.google.com/spreadsheets/d/1IfGqf3tgcW9PoL1h8vRJG6lTqVZuNsPYIbhG947FKMk/edit
https://docs.weblate.org/en/latest/devel/reporting.html
https://weblate.securedrop.org/
https://gitter.im/freedomofpress/securedrop
https://weblate.securedrop.org/admin/weblate_auth/user/
https://github.com/freedomofpress/securedrop-i18n
https://weblate.securedrop.org/admin/weblate_auth/user/

SecureDrop Developer Documentation, Release latest

19.4.3 Update the Weblate full text index
Weblate’s full-text index can occasionally get out of sync. When this happens, Weblate’s search may fail to find a word
that you know exists in the source strings. You can rebuild the index with:

$ ssh debian@weblate.securedrop.org
$ cd /app/weblate
$ sudo docker-compose run weblate rebuild_index --all --clean

Note that the new index may not be used right away. Some workers may still have the old index open. If the index is
holding up translators with a release looming, the server can be rebooted.

94 Chapter 19. Internationalization (i18n)

https://weblate.securedrop.org/
https://weblate.securedrop.org/

CHAPTER

TWENTY

DOCUMENTATION GUIDELINES

SecureDrop’s documentation for end users (sources, journalists and administrators) is available at https://docs.
securedrop.org. It is written in reStructuredText (reST) and hosted by Freedom of the Press Foundation using a theme
by Read the Docs. The documentation files are stored in the docs/ directory of the SecureDrop docs repository.

Developer documentation is maintained separately via the SecureDrop developer documentation repository and pub-
lished to https://developers.securedrop.org.

20.1 Documentation versions
SecureDrop maintains two versions of its end user documentation: stable (appropriate for end users) and latest (appro-
priate for developers). stable is the default, and is built from our latest signed git tag. latest is built from the head
of the main git branch of the securedrop-docs repository.

The developer documentation at https://developers.securedrop.org/ is published only in a single version. When changes
are merged into the main branch of the securedrop-dev-docs repository, a new version of the documentation is built
immediately.

20.2 Updating Documentation
To get started editing the docs:

1. Clone the SecureDrop documentation repository.

For the end user documentation:

git clone https://github.com/freedomofpress/securedrop-docs.git

For the developer documentation:

git clone https://github.com/freedomofpress/securedrop-dev-docs.git

2. Install Poetry, which is used to manage the Python dependencies of the project.

If you are not already using Poetry, follow the installation guide to set up Poetry on your operating system.

3. Install the Python dependencies of the project.

poetry install

We use the version of Python included with the most recent stable release of the Debian GNU/Linux distribution.
The project configuration therefore specifies that this version of Python is required.

If you receive a warning that the required version of Python cannot be found, you may need to install it. If
necessary, you can use pyenv to manage multiple versions of Python alongside each other.

95

https://docs.securedrop.org
https://docs.securedrop.org
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://freedom.press/
https://docs.readthedocs.io/en/latest/index.html
https://github.com/freedomofpress/securedrop-docs
https://github.com/freedomofpress/securedrop-dev-docs
https://developers.securedrop.org
https://docs.securedrop.org/en/stable/
https://docs.securedrop.org/en/latest/
https://github.com/freedomofpress/securedrop-docs
https://developers.securedrop.org/
https://github.com/freedomofpress/securedrop-dev-docs
https://python-poetry.org/docs/#installing-with-the-official-installer
https://github.com/pyenv/pyenv

SecureDrop Developer Documentation, Release latest

4. Build the docs for viewing in your web browser:

make docs

You can then preview the documentation at http://127.0.0.1:8000. Navigate to the docs/ directory to make
changes to the documentation rendered on https://docs.securedrop.org or https://developers.securedrop.org/. The
documentation pages will automatically rebuild in the browser window, as you make changes; you don’t need to
refresh the page manually.

After performing lint checks, open a PR against the main branch of the appropriate repository.

20.3 Testing Documentation Changes
You can check for formatting violations by running the linting option:

make docs-lint

The make docs command will display warnings if mistakes are found, but will still build the documentation. Using
make docs-lint will convert any warnings to errors, causing the build to fail.

To test the documentation for broken links, run the following command from a reliable internet connection:

make docs-linkcheck

Project maintainers will need to approve the PR before it can be merged.

Note

It is generally good practice to maintain a clean git history by reducing the number of commits to a reasonable
minimum. You can do this by squashing closely related commits through an interactive rebase once your PR is
close to being merged.

If you would like a project maintainer to help you with squashing commits in a PR, please don’t hesitate to leave a
comment requesting assistance.

20.4 Pushing to a contributor fork
As a maintainer, you can push directly to a contributor fork, as long as there is an active Pull Request corresponding
to the branch you are pushing to, and you have added the contributor remote with authentication enabled (i.e. the url
value in .git/config starts with git@github.com).

20.5 Updating Screenshots
The user guides for SecureDrop contain screenshots of the web applications. To update these screenshots automatically
you can run this command from within your main SecureDrop repository checkout:

DOCS_REPO_DIR=/path/to/docs make update-user-guides

This will generate screenshots for each page in the web application and copy them to the folder docs/images/manual/
screenshots in your documentation repository checkout, where they will replace the existing screenshots. Stage for
commit any screenshots you wish to update. If you wish to update all screenshots, simply stage for commit all changed
files in that directory.

Prior to generating screenshots as part of a release update:

96 Chapter 20. Documentation Guidelines

http://127.0.0.1:8000
https://docs.securedrop.org
https://developers.securedrop.org/

SecureDrop Developer Documentation, Release latest

1. Ensure that the version string shown in the screenshots is the version that will be released. You can manually edit
securedrop/version.py in your SecureDrop repository checkout if it currently contains a release candidate
string.

2. Configure the New York World sample instance logo. Because the functional tests used to generate the logo
may themselves update the logo, it is safest to temporarily overwrite the stock logo in securedrop/static/i/
logo.png in your SecureDrop repository checkout.

Note

The automated screenshots update does not update screenshots for Tails, the Tor Browser UI, the firewall captive
portal, etc. If you notice discrepancies in those screenshots, please open issues so they can be addressed at a later
point.

20.6 Updating Upgrade Guides
We ship an upgrade guide for each release. As part of updating the documentation for a release:

1. Create a new upgrade guide copied from the most recent one and add it to the index.

2. Ensure that the latest_upgrade_guide reference at the top of the document is only present in the latest upgrade
guide.

3. If this is a major-level or minor-level release, remove the oldest upgrade guide and associated patch-level guides
from the documentation.

Example: If you are adding a guide to upgrade from 4.5.0 to 4.6.0, and the oldest guide present is from 4.2.0 to
4.3.0, remove it along with any guides for 4.2.1, 4.2.2, etc.).

4. If this is a major-level or minor-level release, make sure to include the reminders in docs/includes/
backup-and-update-reminders.txt towards the end of the document.

5. If you are not also the release manager, check with them about any other pertinent release-specific instructions
that should be included.

6. Finally, ensure that mentions of the current version are up to date. You can use the update_version.sh con-
venience script to do so.

Example: If you are adding a guide to upgrade to 2.4.2, you can run ./update_version.sh 2.4.2, then
verify that the version changes are pertinent and save them.

20.7 Style Guide
Please see the reStructuredText Primer by the Sphinx project as a reference for writing in the markup language used
for this documentation.

20.7.1 Code Blocks
Ensure that example commands in codeblocks are easy to copy and paste. Do not prepend the $ shell prompt indicator
to example commands:

echo hello

In the context of a terminal session with both typed commands and printed output text, use $ before the typed commands:

20.6. Updating Upgrade Guides 97

https://github.com/freedomofpress/securedrop-ux/blob/main/User%20Testing/NYWorld%20Demo%20Site/logo.png
https://semver.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

SecureDrop Developer Documentation, Release latest

$ echo hello
hello
$ echo sunshine
sunshine

20.7.2 Date Format
Follow AP guidelines for formatting dates. Don’t use the ISO format for adding dates to the documentation.

To avoid confusion, format dates in the documentation as Month_Name Day, Year:

October 13, 2020

not

13 October, 2020
13/10/2020
10/13/2020
10/13/20
2020-10-13
2020-Oct-13

20.7.3 File Paths
Cloning the SecureDrop git repository creates a directory called securedrop. This securedrop directory also con-
tains a securedrop subdirectory for app code.

.
securedrop

...
securedrop

... ...

To avoid confusion, paths to files anywhere inside the SecureDrop git repository should be written as ./some_dir/
file, where . is the top level directory of the SecureDrop repo.

Use absolute paths when referring to files outside the SecureDrop repository: /usr/local/bin/tor-browser.

20.7.4 Glossary
Text taken directly from a user interface is in bold face.

“Once you’re sure you have the right drive, click Format Drive.”

SecureDrop-specific glossary is in italics.

“To get started, you’ll need two Tails drives: one for the Admin Workstation and one for the Secure Viewing
Station.”

When referring to virtual machines in the development environment, use lowercase for the name:

app-staging VM

98 Chapter 20. Documentation Guidelines

https://docs.securedrop.org/en/stable/glossary.html

SecureDrop Developer Documentation, Release latest

20.7.5 Line Wrapping
Lines in the plain-text documentation files should wrap at 80 characters. (Some exceptions: complex code blocks
showing example commands, or long URLs.)

20.7.6 Usage and Style
To avoid confusion, lists should include the “Oxford comma”:

“You will need an email address, a public GPG key for that address, and the fingerprint for that key.”

Capitalize all section headings in title case:

Before You Begin
================

Set up the Environment

not

Before you begin
================

Set up the environment

20.7. Style Guide 99

SecureDrop Developer Documentation, Release latest

100 Chapter 20. Documentation Guidelines

CHAPTER

TWENTYONE

TESTING SECUREDROP

The SecureDrop project ships both application code for running on servers hosted on-site at news organizations, as well
as configuration scripts for provisioning the servers to accept updates to the application code, and to harden the system
state. Therefore testing for the project includes Application Tests for validating that the app code behaves as expected,
and Configuration Tests to ensure that the servers are appropriately locked down, and able to accept updates to the app
code.

In addition, the Continuous Integration automatically runs the above Application and Configuration tests against cloud
hosts, to aid in PR review.

101

SecureDrop Developer Documentation, Release latest

102 Chapter 21. Testing SecureDrop

CHAPTER

TWENTYTWO

TESTING: APPLICATION TESTS

The application test suite uses pytest, selenium, and other Python tools to comprehensively test the SecureDrop server.

The application tests consist of unit tests for the Python application code and functional tests that verify the functionality
of the application code from the perspective of the user through a web browser.

22.1 Running the Application Tests
The tests are written to be run inside the development container:

make test

If you just want to run the functional tests, you can use:

make test-functional

Similarly, if you want to run a single test, you can specify it through the file, class, and test name:

securedrop/bin/dev-shell bin/run-test \
tests/test_journalist.py::TestJournalistApp::test_invalid_credentials

22.1.1 Page Layout Tests
You can check the rendering of the layout of each page in each translated language using the page layout tests. These will
generate screenshots of each page and can be used for example to update the SecureDrop user guides when modifications
are made to the UI.

To run just these tests:

make test-pageslayout

22.2 Updating the Application Tests
Unit tests are stored in the securedrop/tests/ directory and functional tests are stored in the functional test directory:

securedrop/tests/
functional

test_admin_interface.py
test_submit_and_retrieve_file.py

...
submission_not_in_memory.py

(continues on next page)

103

https://docs.pytest.org/en/latest/
https://www.selenium.dev/documentation/

SecureDrop Developer Documentation, Release latest

(continued from previous page)

utils
db_helper.py
env.py
asynchronous.py

test_journalist.py
test_source.py

...
test_store.py

securedrop/tests/utils contains helper functions for writing tests. If you want to add a test, you should see if there
is an existing file appropriate for the kind of test, e.g. a new unit testing manage.py should go in test_manage.py.

104 Chapter 22. Testing: Application Tests

CHAPTER

TWENTYTHREE

TESTING: CONFIGURATION TESTS

Testinfra tests verify the end state of a full SecureDrop server, whether on physical hardware or in staging VMs. Any
changes to the Ansible configuration should have a corresponding test.

23.1 Installation
pip install --no-deps --require-hashes -r securedrop/requirements/python3/develop-
→˓requirements.txt

23.2 Running the Config Tests
Testinfra tests are executed against a virtualized staging environment. To provision the environment and run the tests,
run the following commands:

make build-debs
make staging
make testinfra

Test failure against any host will generate a report with informative output about the specific test that triggered the error.
Molecule will also exit with a non-zero status code.

23.3 Updating the Config Tests
Changes to the Ansible config should result in failing config tests, but only if an existing task was modified. If you add
a new task, make sure to add a corresponding spectest to validate that state after a new provisioning run. Tests import
variables from separate YAML files than the Ansible playbooks:

molecule/testinfra/staging/vars/
app-prod.yml
app-staging.yml
mon-prod.yml
mon-staging.yml
staging.yml

Any variable changes in the Ansible config should have a corresponding entry in these vars files. These vars are
dynamically loaded for each host via the molecule/testinfra/staging/conftest.py file. Make sure to add your
tests to the relevant location for the host you plan to test:

105

https://testinfra.readthedocs.io/en/latest/

SecureDrop Developer Documentation, Release latest

molecule/testinfra/staging/app/
apache

test_apache_journalist_interface.py
test_apache_service.py
test_apache_source_interface.py
test_apache_system_config.py

test_apparmor.py
test_appenv.py
test_network.py
test_ossec.py

In the example above, to add a new test for the app-staging host, add a new file to the testinfra/staging/app
directory.

Tip

Read Updating OSSEC Rules to learn how to write tests for the OSSEC rules.

23.4 Config Test Layout
With some exceptions, the config tests are broken up according to platform definitions in the Molecule configuration:

molecule/testinfra/staging
app
app-code
common
mon
ossec
vars

Ideally the config tests would be broken up according to roles, mirroring the Ansible configuration. Prior to the re-
organization of the Ansible layout, the tests are rather tightly coupled to hosts. The layout of config tests is therefore
subject to change.

23.5 Running the CI Staging Environment
The staging environment can also run via CI in Google Cloud (GCE). These tests are run every night or if a member
of the freedomofpress Github Organization pushes to a branch that starts with stg-. Please ask in your PR if you’d
like someone to run the tests for you.

The tests can also be run manually with a Google Cloud Platform account and Docker installed locally:

Source the setup script using the following command:

source ./devops/gce-nested/ci-env.sh

You will be prompted for the values of the required environment variables. There are some defaults set that you may
want to change. You will need to export GOOGLE_CREDENTIALS with authentication details for your GCP account,
which is outside the scope of this guide. Some parameters are specific to FPF’s GCE setup and may need adjusting if
you are running elsewhere.

Then to run the tests locally:

106 Chapter 23. Testing: Configuration Tests

https://cloud.google.com/docs/authentication/use-cases

SecureDrop Developer Documentation, Release latest

make ci-go

You can use ./devops/gce-nested/ci-runner.sh to provision the remote hosts while making changes, includ-
ing rebuilding the Debian packages used in the Staging environment. See Virtual Environments: Servers for more
information.

23.5. Running the CI Staging Environment 107

SecureDrop Developer Documentation, Release latest

108 Chapter 23. Testing: Configuration Tests

CHAPTER

TWENTYFOUR

DEMO.SECUREDROP.ORG

There is a deployment of SecureDrop server running at https://demo.securedrop.org/ that is very similar to make dev.
Changes pushed to the develop branch automatically get deployed there.

24.1 How it works
Deployment is managed in Codefresh, which we use for other Kubernetes-related CI/CD; if you want to look at build
logs or (re)start pipelines and don’t have access, ask someone from the infra team. This is not a requirement to be able
to update and deploy the demo; you just need to be able to push to the SecureDrop repo’s develop branch.

24.2 Containers
There are two containers in the securedrop repo:

• securedrop/dockerfiles/focal/python3/DemoDockerfile

• devops/demo/landing-page/Dockerfile

If you want to try these locally, build them from the root of the SecureDrop repository, using docker build -f FILE
.. The “landing page” container is what you see at https://demo.securedrop.org/ and the main container serves both
https://demo-source.securedrop.org/ and https://demo-journalist.securedrop.org/

24.3 Troubleshooting
The deployment is not highly available, and everything in Redis is thrown away when it restarts. When restarting, the
source and journalist interfaces will both be unavailable for a few seconds and you’ll see a 503.

If you need to cause a restart without pushing a new deployment, or roll back to an earlier version, ask the infra team.
These can be done quickly but require direct Kubernetes access.

109

https://demo.securedrop.org/
https://github.com/freedomofpress/securedrop
https://demo.securedrop.org/
https://demo-source.securedrop.org/
https://demo-journalist.securedrop.org/

SecureDrop Developer Documentation, Release latest

110 Chapter 24. demo.securedrop.org

CHAPTER

TWENTYFIVE

PACKAGE REPOSITORIES

SecureDrop publishes .deb and .rpm packages via apt and yum repositories, respectively.

Each package repository is maintained in a specific Git LFS repository that is published to Cloudflare’s R2 static hosting
product. The Git repository contains the .deb and .rpm files, as well as the repository metadata. When a new commit
is pushed, GitHub Actions (GHA) publishes the contents of the “public” folder to Cloudflare. We use rclone for this
process to make it mostly vendor-neutral in case we need to switch providers in the future.

For historical reasons, the apt repositories are on *.freedom.press while the yum respositories are on *.
securedrop.org.

There are three levels of package repositories, which correspond to different stages of the development process.

25.1 Test repositories
• apt: apt-test.freedom.press, via securedrop-apt-test

• yum: yum-test.securedrop.org, via securedrop-yum-test

Test repositories serve two primary functions. First, during the release process, release candidate packages are pub-
lished here to enable developers to perform QA, including testing upgrades.

Second, nightly package builds are automatically pushed to test repositories by CI to enable developers to test integrated
systems with code straight from main. Nightlies are stored in a separate component: “nightlies” in apt, “fXX-nightlies”
in yum.

The signing key for these test repositories is lower-security and stored in GHA. Packages are automatically signed by
a GHA workflow before being uploaded to Cloudflare.

25.2 QA repositories
• apt: apt-qa.freedom.press, via securedrop-apt-prod’s release branch

• yum: yum-qa.securedrop.org, via securedrop-yum-prod’s release branch

QA repositories are used as the final QA step before a new version is fully released. Developers upload candidate
packages (using a non-release candidate version) to the release branch, and sign the repository using the high-security,
offline, SecureDrop signing key.

Once the new packages have been QA’d and approved, the release branch is merged into main, which publishes the
packages on the production repositories.

111

https://developers.cloudflare.com/r2/
https://developers.cloudflare.com/r2/
https://rclone.org/
https://apt-test.freedom.press
https://github.com/freedomofpress/securedrop-apt-test
https://yum-test.securedrop.org
https://github.com/freedomofpress/securedrop-yum-test
https://apt-qa.freedom.press
https://github.com/freedomofpress/securedrop-apt-prod/tree/release
https://yum-qa.securedrop.org
https://github.com/freedomofpress/securedrop-yum-prod/tree/release

SecureDrop Developer Documentation, Release latest

25.3 Production repositories
• apt: apt.freedom.press, via securedrop-apt-prod’s main branch

• yum: yum.securedrop.org, via securedrop-yum-prod’s main branch

Production repositories are used by real deployments of SecureDrop. SecureDrop server is configured to automatically
fetch and install updates every 24 hours while SecureDrop Workstation requires a manual updater run.

This repository is signed using the high-security, offline, SecureDrop signing key.

25.4 How it works technically
This is an overview of the workflow, for step-by-step instructions, see the server release management and workstation
release management docs.

1. New packages are committed to the relevant Git LFS repository:

• Nightlies: by GitHub Actions

• Test/QA/Prod: by a maintainer

2. If this is a yum repository containing RPMs, the individual RPMs are signed:

• Test: by GitHub Actions, using the low-security test key

• QA/Prod: by a maintainer, using the offline SecureDrop release key

3. Repository metadata is updated, including generation of index.html:

• Test: by the .github/workflows/sign.yml GitHub Actions workflow

• QA/Prod: by a maintainer, by running ./tools/publish locally (this script is a misnomer as it doesn’t
actually publish the packages)

4. If this is an apt repository, the Release files are signed:

• Test: by the .github/workflows/sign.yml GitHub Actions workflow

• QA/Prod: by a maintainer, using the offline SecureDrop release key

5. Once pushed to the correct branch, a GitHub Actions workflow publishes the “public” (yum) or “repo/public”
(apt) folder to Cloudflare R2.

We use rclone for this purpose, and in theory are entirely vendor neutral and can switch to any another S3-like
service.

112 Chapter 25. Package repositories

https://apt.freedom.press
https://github.com/freedomofpress/securedrop-apt-prod/tree/main
https://yum.securedrop.org
https://github.com/freedomofpress/securedrop-yum-prod/tree/main

CHAPTER

TWENTYSIX

DEBIAN PACKAGES

This document contains brief descriptions of the Debian packages hosted and maintained by Freedom of the Press
Foundation in our apt repository (apt.freedom.press).

linux-image-*-grsec
This package contains the Linux kernel image, patched with grsecurity. Listed as a dependency of
securedrop-grsec.

ossec-agent
Installs the OSSEC agent, repackaged for Ubuntu. Listed as a dependency of securedrop-ossec-agent.

ossec-server
Installs the OSSEC manager, repackaged for Ubuntu. Listed as a dependency of securedrop-ossec-server.

securedrop-app-code
Packages the SecureDrop application code, Python pip dependencies and AppArmor profiles.

securedrop-ossec-agent
Installs the SecureDrop-specific OSSEC configuration for the Application Server.

securedrop-ossec-server
Installs the SecureDrop-specific OSSEC configuration for the Monitor Server.

securedrop-grsec
SecureDrop grsecurity kernel metapackage, depending on the latest version of linux-image-*-grsec.

securedrop-keyring
Packages the public signing key for this apt repository. Allows for managed key rotation via automatic updates,
as implemented in SecureDrop 0.3.10.

All SecureDrop Client component packages.
See SecureDrop Workstation Release Management for more information.

Note

The SecureDrop install process configures a custom Linux kernel hardened with the grsecurity patch set. Only
binary images are hosted in the apt repo. For source packages, see the Source Offer.

26.1 About dbgsym packages
A debug symbols package is a Debian package that includes static debug symbols and allows for generating a backtrace
or other diagnostic information in the event of a crash, for example with gdb. These packages have a -dbgsym.deb
suffix on Debian, and a -dbgsym.ddeb suffix (which we rename to to -dbgsym.deb for consistency) on Ubuntu. These
packages are generated during the build process for components that include compiled binaries, such as for SecureDrop
components with Rust or C code, and they do not make any other changes (i.e, they do not enable debug logs).

113

https://apt.freedom.press
https://github.com/ossec/ossec-hids
https://github.com/ossec/ossec-hids
https://github.com/freedomofpress/securedrop/blob/c5b4220e04e3c81ad6f92d5e8a92798f07f0aca2/changelog.md
https://github.com/freedomofpress/securedrop-client
https://github.com/freedomofpress/securedrop/blob/develop/SOURCE_OFFER
https://wiki.debian.org/DebugPackage
https://wiki.debian.org/HowToGetABacktrace/#Running_gdb
https://github.com/freedomofpress/securedrop/blob/b7bda4fe7badd5267a829f5bfe243fd13db9178e/builder/build-debs-securedrop.sh#L35-L37

SecureDrop Developer Documentation, Release latest

When building non-kernel production Debian packages, follow the relevant Release Management documentation to
commit the dbgsym packages along with the regular production packages. These packages are automatically placed in
a separate repo component (main-debug) in securedrop-apt-prod.

Currently, we publish dbgsym packages for: securedrop-app-code (core), securedrop-client,
securedrop-proxy (workstation). Kernel builds also generate dbgsym packages, but they are not published
due to their prohibitive size.

114 Chapter 26. Debian packages

https://github.com/freedomofpress/securedrop-apt-prod

CHAPTER

TWENTYSEVEN

UPDATING OSSEC RULES

SecureDrop uses the OSSEC open source host-based intrusion detection system (IDS) for log analysis, file integrity
checking, policy monitoring, rootkit detection and real-time alerting. Refer to our OSSEC guide to learn more about
how SecureDrop admins set up and monitor OSSEC alerts.

27.1 Alerting Strategy
The goals of the OSSEC alerts in SecureDrop is to notify admins of:

1. Suspicious security events

2. Changes that require some kind of admin action

3. Other important notifications regarding system state.

If an alert is purely informational and there is no realistic action an admin is expected to take, you should think carefully
before suggesting a rule for it. Each additional alert that admins must read and/or respond to takes time. Alerts that are
unimportant or otherwise require no action can lead to alert fatigue and thus to critical alerts being ignored.

27.2 Using ossec-logtest
Development on the OSSEC rules should be done from the staging environment.

On mon-staging, there is a utility installed as part of OSSEC called ossec-logtest that you can use to test log
events. In order to evaluate whether an alert will be produced, and if so, what rule triggered it and its level, you can
simply pass the event to ossec-logtest:

root@mon-staging:/home/vagrant# sudo echo "Feb 10 23:34:40 app-prod kernel: [124.
→˓188641] grsec: denied RWX mmap of <anonymous mapping> by /usr/sbin/
→˓apache2[apache2:1328] uid/euid:33/33 gid/egid:33/33, parent /usr/sbin/
→˓apache2[apache2:1309] uid/euid:0/0 gid/egid:0/0" | /var/ossec/bin/ossec-logtest
2017/08/16 22:28:25 ossec-testrule: INFO: Reading local decoder file.
2017/08/16 22:28:25 ossec-testrule: INFO: Started (pid: 18973).
ossec-testrule: Type one log per line.

**Phase 1: Completed pre-decoding.
full event: 'Feb 10 23:34:40 app-prod kernel: [124.188641] grsec: denied RWX␣

→˓mmap of <anonymous mapping> by /usr/sbin/apache2[apache2:1328] uid/euid:33/33 gid/
→˓egid:33/33, parent /usr/sbin/apache2[apache2:1309] uid/euid:0/0 gid/egid:0/0'

hostname: 'app-prod'
program_name: 'kernel'
log: '[124.188641] grsec: denied RWX mmap of <anonymous mapping> by /usr/sbin/

→˓apache2[apache2:1328] uid/euid:33/33 gid/egid:33/33, parent /usr/sbin/
(continues on next page)

115

https://docs.securedrop.org/en/stable/ossec_alerts.html

SecureDrop Developer Documentation, Release latest

(continued from previous page)

→˓apache2[apache2:1309] uid/euid:0/0 gid/egid:0/0'

**Phase 2: Completed decoding.
decoder: 'iptables'

**Phase 3: Completed filtering (rules).
Rule id: '100101'
Level: '7'
Description: 'grsec error was detected'

**Alert to be generated.

This is the utility we use in automated tests of OSSEC.

27.3 Writing Automated Tests for OSSEC Rules
We strongly recommend before making changes to OSSEC rules to attempt to write a failing test which you then can
make pass with a patch to the OSSEC rules:

1. Identify a log event you can use to trigger the alert.

Warning

Be sure to use only log events from test SecureDrop instances or those you have verified do not contain any sensitive
data.

2. Write a Testinfra test to verify that the log event does or does not trigger an alert.

3. Apply your patch to the OSSEC rule on the relevant VM (likely app).

4. Restart the service via sudo service ossec restart on mon.

Note

Currently we only have automated tests for alerts triggered due to log events (for example not for syscheck, OSSEC’s
integrity checking process). If you have ideas for additional automated test coverage of alerts, please suggest them
in ticket 2134 on GitHub.

27.4 Adding new OSSEC rules
OSSEC processes events in two steps:

1. Decoders parse and filter log events that meet certain criteria for subsequent processing. SecureDrop’s custom
rules are defined in install_files/securedrop-ossec-server/var/ossec/rules/local_rules.xml.

2. Rules check decoded events against conditions and optionally yield alerts. SecureDrop’s custom rules are defined
in install_files/securedrop-ossec-server/var/ossec/etc/local_decoder.xml.

A basic decoder filters log events by program_name (e.g., fwupd). If a decoder is already defined for the program
of interest, you can go straight to defining a new rule unless you have a reason to add additional decoders for further
filtering.

116 Chapter 27. Updating OSSEC Rules

https://testinfra.readthedocs.io/en/latest/
https://ossec-docs.readthedocs.io/en/latest/docs/manual/syscheck/index.html
https://github.com/freedomofpress/securedrop/issues/2134
https://ossec-documentation.readthedocs.io/en/latest/manual/lids/decoders.html
https://ossec-documentation.readthedocs.io/en/latest/manual/lids/rules.html

SecureDrop Developer Documentation, Release latest

27.4.1 The decoder file
For example, to add a decoder for log events from fwupd, you can add to local_decoder.xml:

<!--
The default fwupd tries to auto-update and generates error.

-->
<decoder name="fwupd">
<program_name>fwupd</program_name>

</decoder>

You can find this program_name value using the “ossec-logtest” command. Copy-paste the log event as input to this
command, and it will give you some parsed output:

$ echo "Mar 1 13:22:53 app fwupd[133921]: 13:22:53:0883 FuPluginUefi Error␣
→˓opening directory â€œ/sys/firmware/efi/esrt/entriesâ€♦: No such file or directory" |␣
→˓sudo /var/ossec/bin/ossec-logtest
[...]
**Phase 1: Completed pre-decoding.

full event: 'Mar 1 13:22:53 app fwupd[133921]: 13:22:53:0883 FuPluginUefi ␣
→˓Error opening directory â€œ/sys/firmware/efi/esrt/entriesâ€♦: No such file or directory
→˓'

hostname: 'app'
program_name: 'fwupd'
log: '13:22:53:0883 FuPluginUefi Error opening directory â€œ/sys/firmware/

→˓efi/esrt/entriesâ€♦: No such file or directory'

**Phase 2: Completed decoding.
No decoder matched.

**Phase 3: Completed filtering (rules).
Rule id: '1002'
Level: '2'
Description: 'Unknown problem somewhere in the system.'

**Alert to be generated.

27.4.2 The rules
Next, you can add one or more rules corresponding to the new decoder, making sure that the rules have proper unique
id numbers and are written in the correct (sorted) place in the local_rules.xml file.

<group name="fwupd">
<rule id="100111" level="0">

<decoded_as>fwupd</decoded_as>
<match>Error opening directory</match>
<description>fwupd error</description>
<options>no_email_alert</options>

</rule>
<rule id="100112" level="0">

<decoded_as>fwupd</decoded_as>
<match>Failed to load SMBIOS</match>
<description>fwupd error for auto updates</description>
<options>no_email_alert</options>

</rule>
(continues on next page)

27.4. Adding new OSSEC rules 117

SecureDrop Developer Documentation, Release latest

(continued from previous page)

</group>

27.4.3 Verify the new OSSEC rule
On the monitor server you can use the following command as root to verify the new rule:

/var/ossec/bin/ossec-analysisd -t

ossec-analysisd will receive log messages and compare them to our rules, including the new rule you just added.
Then it creates alerts when a log message matches an applicable rule.

27.4.4 Adding an automated test for staging
You can then add tests in the molecule/testinfra/mon/test_ossec_ruleset.py file. Here the test loops
over the entries in the log_events_with_ossec_alerts and log_events_without_ossec_alerts variables in
molecule/testinfra/vars/staging.yml and makes sure that the rule_id and level match. See Writing Auto-
mated Tests for OSSEC Rules for details.

27.5 Deployment
The OSSEC rules and associated configuration files are distributed via Debian packages maintained by Freedom of the
Press Foundation. Any changes made to OSSEC configuration files will land on production SecureDrop monitoring
servers as part of each SecureDrop release. This upgrade will occur automatically.

Note

The use of automatic upgrades for release deployment means that any changes made locally by admins to their
OSSEC rules will not persist after a SecureDrop update.

118 Chapter 27. Updating OSSEC Rules

CHAPTER

TWENTYEIGHT

GENERATING APPARMOR PROFILES FOR TOR AND APACHE

make staging
molecule login -s libvirt-staging-focal -h app-staging
sudo su
cd /var/www/securedrop

Run tests, use the application web interface, restart services, reboot the VMs via vagrant reload /staging/. The
goal is to create as much interaction with the system as possible, in order to establish an expected baseline of behavior.
Then run:

aa-logprof

Follow the prompts on screen and save the new configuration. Then set the profile to complain mode:

aa-complain /etc/apparmor.d/<PROFILE_NAME>

Rinse and repeat, again running aa-logprof to update the profile. The AppArmor profiles are saved in /etc/
apparmor.d/. There are two profiles:

• /etc/apparmor.d/usr.sbin.tor

• /etc/apparmor.d/usr.sbin.apache2

After running aa-logprof you will need to copy the modified profile back to your host machine to include them in
the securedrop-app-code package.

ansible -i .vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory app-prod -m␣
→˓fetch -a 'flat=yes dest=install_files/ansible-base/ src=/etc/apparmor.d/usr.sbin.
→˓apache2'
ansible -i .vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory app-prod -m␣
→˓fetch -a 'flat=yes dest=install_files/ansible-base/ src=/etc/apparmor.d/usr.sbin.tor'

The AppArmor profiles are packaged with the securedrop-app-code. The securedrop-app-code postinst puts
the AppArmor profiles in enforce mode on production and staging hosts.

119

SecureDrop Developer Documentation, Release latest

120 Chapter 28. Generating AppArmor Profiles for Tor and Apache

CHAPTER

TWENTYNINE

PORTABLE SECUREDROP DEMO

When at a conference or traveling, it is possible to prepare a SecureDrop demo using portable hardware and adapted
usage scenarios.

29.1 Hardware
• A laptop running the staging virtual environment

• A Tails compatible laptop with a physical radio kill switch (for instance a Lenovo T420)

• Four USB keys prepared for the staging environment running on the laptop

– Transfer

– Journalist

– SVS

– Admin

The Tails compatible laptop has the physical radio kill switch turned off to simulate a SVS and it is rebooted with the
physical radio kill switch turned on to simulate the Admin or Journalist workstation.

121

SecureDrop Developer Documentation, Release latest

122 Chapter 29. Portable SecureDrop Demo

CHAPTER

THIRTY

RELEASE MANAGEMENT

The Release Manager is responsible for shepherding the release process to successful completion. This document
describes their responsibilities. Some items must be done by people that have special privileges to do specific tasks
(e.g. privileges to access the production apt server), but even if the Release Manager does not have those privileges,
they should coordinate with the person that does to make sure the task is completed.

In addition to the Release Manager, we typically recognize the following roles for a SecureDrop release:

• Deputy RM: for additional time zone coverage, to delegate specific tasks, and to act as backup in case of the
RM becomes unavailable for any reason.

• Localization Manager: to manage outreach to the translator community, and to coordinate translation updates
of existing strings.

• Deputy LM: like the RM, this role is backed up by another team member.

• Communications Manager: to prepare and distribute pre-release and release messaging (including standard
upgrade instructions, release notes, social media posts, and support portal announcements)

During the full release cycle, we also recognize the following role:

• Community Manager: to engage with community contributors, offer initial responses to new issues and Pull
Requests, and follow up with other SecureDrop team members as appropriate.

We aim to rotate membership in these roles regularly.

30.1 Pre-Release
1. Open a Release SecureDrop <major>.<minor>.<patch> issue to track release-related activity. Keep this issue

updated as you proceed through the release process for transparency. If applicable, consult the specific consid-
erations <tails_only_releases> for releases that only modify code running on Tails-based workstations.

2. If this is a regular release, work with the localization manager for this release cycle to review and merge trans-
lations.

3. Copy a link of the latest release or release candidate from the Tails apt repo and include it in the issue. The goal
is to make sure we test against the lastest Tails release, including release candidates, so that we can report bugs
early to Tails.

4. Create a release branch.

For a regular release, create a release branch off of develop:

git checkout develop
git checkout -b release/<major>.<minor>.0

For a point release, create a release branch off of the latest merged release branch:

123

https://deb.tails.boum.org/dists/

SecureDrop Developer Documentation, Release latest

git checkout release/<major>.<minor>.0
git checkout -b release/<major>.<minor>.1

5. For each release candidate, update the version files, code repo changelog, and Debian package changelog.

1. If there have been new translations since the release branch or the last release candidate was cut, ask the
localization manager to review them for merge into develop and then backport them into the release branch.

2. First collect a list of changes since the last release. For example, if the last release was version 1.6.0, you
can view changes in GitHub by running:

https://github.com/freedomofpress/securedrop/compare/release/1.6.0...develop

Also check SecureDrop milestones to make sure all milestone changes are included. Append GitHub PR
numbers to each change. You will add these changes to the changelog in the next step.

3. Run update_version.sh which will walk you though updating the version files and changelogs. When
you run the script, pass it the new version in the format <major>.<minor>.<patch>~rcN:

./update_version.sh <major>.<minor>.<patch>~rcN

Note

A tilde is used in the version number passed to update_version.sh to match the format specified
in the Debian docs on how to name and version a package, whereas a dash is used in the tag version
number since git does not support the use of tilde.

Note

In the Debian changelog, we typically just refer the reader to the changelog.md file.

4. Disregard the script-generated .tag file since this is only used when we need to sign the final release tag
(see Release Process section).

5. Sign the commit that was added by update_version.sh:

git commit --amend --gpg-sign

6. Push the branch:

git push origin release/<major>.<minor>.<patch>

7. Push the unsigned tag (only the final release tag needs to be signed, see Release Process section):

git push origin <major>.<minor>.<patch>-rcN

8. Once the tag is pushed, notify the Localization Manager so that the localization team can get started on
translations.

6. Build Debian packages:

a. Check out the tag for the release candidate.

b. Build the packages with make build-debs

124 Chapter 30. Release Management

https://github.com/freedomofpress/securedrop/milestones
https://www.debian.org/doc/manuals/maint-guide/first.en.html#namever
https://git-scm.com/docs/git-check-ref-format#_description

SecureDrop Developer Documentation, Release latest

c. Save and publish build metadata.

d. Open a PR on securedrop-apt-test that targets the main branch with the new debs. Do not include tarballs or
any debs that would overwrite existing debs. Changes merged to this branch will be published to apt-test.
freedom.press within 15 minutes.

Warning

Only commit deb packages with an incremented version number: do not clobber existing packages.
That is, if there is already a deb called e.g. ossec-agent-3.6.0-amd64.deb in main, do not
commit a new version of this deb.

7. Write a test plan that focuses on the new functionality introduced in the release. Post for feedback and make
changes based on suggestions from the community. Once it’s ready, publish the test plan in the wiki and link to
it in the Release SecureDrop <major>.<minor>.<patch> issue.

8. Create a new QA matrix spreadsheet by copying the google spreadsheet from the last release and adding a new
row for testing new functionality specific to the release candidate. Link to this in the Release SecureDrop
<major>.<minor>.<patch> issue.

9. At this point, QA can begin. During the QA period:

• Encourage QA participants to QA the release on production VMs and hardware. They should post their
QA reports in the release issue such that it is clear what was and what was not tested. It is the responsibility
of the release manager to ensure that sufficient QA is done on the release candidate prior to final release.

• Triage bugs as they are reported. If a bug must be fixed before the release, it’s the release manager’s
responsibility to either fix it or find someone who can.

• You may, at your discretion, escalate a “release blocker” to “coordinated response” status. In this case,
you (or the person you designate, such as the issue’s reporter) should coordinate an incident-response–style
investigation and resolution of the bug, using tools like Etherpad and Google Docs/Sheets to consolidate
information in real time and convening short sync-up meetings as often as needed. After a coordinated
response, make sure that the findings gathered in these venues are reported back out publicly (i.e., in the
original GitHub issues) for transparency and for future reference.

• Backport release QA fixes merged into develop into the release branch using utils/backport.py, which
uses git cherry-pick -x <commit> to clearly indicate where the commit originated from.

• At your discretion – for example when a significant fix is merged – prepare additional release candidates
and have fresh Debian packages prepared for testing.

• For a regular release, the string freeze will be declared by the translation administrator one week prior to the
release. After this is done, ensure that no changes involving string changes are backported into the release
branch.

• Work with the Communications Manager assigned for the release to prepare a pre-release announcement
that will be shared on the support.freedom.press support portal, securedrop.org website, and Twitter. Wait
until the day of the release before including an announcement for a SecureDrop security update. For a point
release, you may be able to skip the pre-release announcement depending on how small the point release
is.

Make sure a draft of the release notes are prepared and shared for review, and that a draft PR is prepared
into the securedrop-docs repository which:

– bumps the SecureDrop version of the documentation using the update_version.sh script in that
repository;

– adds upgrade instructions and other release-specific technical documentation;

30.1. Pre-Release 125

https://github.com/freedomofpress/securedrop-apt-test
https://github.com/freedomofpress/securedrop/wiki
https://github.com/freedomofpress/securedrop/labels/release%20blocker

SecureDrop Developer Documentation, Release latest

– updates the screenshots.

30.2 Release Process
1. Prepare the final release commit and tag. Do not push the tag file.

2. Step through the signing ceremony for the tag file. If you do not have permissions to do so, coordinate with
someone that does.

3. Once the tag is signed, append the detached signature to the unsigned tag:

cat 1.x.y.tag.sig >> 1.x.y.tag

4. Delete the original unsigned tag:

git tag -d 1.x.y

5. Make the signed tag:

git mktag < 1.x.y.tag > .git/refs/tags/1.x.y

6. Verify the signed tag:

git tag -v 1.x.y

7. Push the signed tag:

git push origin 1.x.y

8. Ensure there are no local changes (whether tracked, untracked or git ignored) prior to building the debs. If you
did not freshly clone the repository, you can use git clean:

Dry run (it will list the files/folders that will be deleted):

git clean -ndfx

Actually delete the files:

git clean -dfx

9. Build Debian packages:

a. Verify and check out the signed tag for the release.

b. Build the packages with make build-debs.

c. Save and publish build metadata.

10. In a clone of the private securedrop-apt-prod repository, create a branch from main called release.

11. In your local branch, commit the built packages to the core/focal directory. Include all .deb packages, in-
cluding -dbgsym packages. -dbgsym packages belong in the main-debug component repo. See Notes on
dbgsym-packages for more information.

12. Run the tools/publish script. This will create the Release file.

13. Commit the changes made by the tools/publish script.

14. Push your commits to the remote release branch. This will trigger an automatic upload of the packages to
apt-qa.freedom.press, but the packages will not yet be installable.

126 Chapter 30. Release Management

https://github.com/freedomofpress/securedrop-apt-prod

SecureDrop Developer Documentation, Release latest

15. Create a draft PR from release into main. Make sure to include a link to the build logs in the PR description.

16. A reviewer must verify the build logs, obtain and sign the generated Release file, and append the detached
signature to the PR. The PR should remain in draft mode. The packages on apt-qa.freedom.press are now
installable.

17. Coordinate with one or more team members to confirm a successful clean install in production VMs using the
packages on apt-qa.freedom.press.

18. If no issues are discovered in final QA, promote the packaging PR out of draft mode.

19. A reviewer must merge the packaging PR. This will publish the packages on apt.freedom.press.

20. The reviewer must delete the release branch so that it can be re-created during the next release.

21. Update the public documentation:

• Review and merge the securedrop-docs PR that bumps the version and adds the upgrade documentation for
this release.

• Verify that there are no changes on the main branch of securedrop-docs that should not be released into the
stable version of the documentation.

If necessary, you can create a branch from an earlier commit. Follow the release/<major>.<minor>.
<patch> convention for the branch name in securedrop-docs, and cherry-pick at least the changes from the
PR above onto it via a backport PR.

• Create a tag signed with your developer key in the format <major>.<minor>.<patch> on the HEAD of the main
branch or of the docs release branch you created in the previous step.

git tag -as <major>.<minor>.<patch>
git push origin <major>.<minor>.<patch>

This will update the stable version of the documentation.

• Subsequent changes to the stable version should be tagged with PEP-440 conformant post-release separators in
the format <major>.<minor>.<patch>-1, <major>.<minor>.<patch>-2, and so on.

1. Verify that the public documentation has been updated. Inspecting or restarting builds requires Codefresh access;
if you lack access, a tech lead or infra team member can do so on your behalf.

2. Create a release on GitHub with a brief summary of the changes in this release.

3. Make sure that release notes are written and posted on the SecureDrop blog.

4. Make sure that the release is announced from the SecureDrop Twitter account.

5. Make sure that members of the support portal are notified about the release.

6. Make sure that version string monitored by FPF’s Icinga monitoring system is updated by the infrastructure team.

30.3 Post-Release
1. Backport the changelog from the release branch into develop.

a. Collect the hashes of all the commits that modified changelog.md during the release:

git log --pretty=oneline changelog.md

b. From a new branch based on develop, cherry-pick each commit in the git log output from the previous
step. Make sure to use the -x flag so that the original commit is appended to the new commit.

2. Bump the SecureDrop version so that it’s ready for the next release.

30.3. Post-Release 127

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests#draft-pull-requests
https://github.com/freedomofpress/securedrop/wiki/QA-Procedures#user-content-preflight-testing
https://docs.securedrop.org/
https://www.python.org/dev/peps/pep-0440/#post-release-separators
https://github.com/freedomofpress/securedrop/releases
https://support.freedom.press

SecureDrop Developer Documentation, Release latest

a. Create a new minor release candidate. Only add a commit message and accept the default changes for
everything else (it’s fine to leave the changelog entries with empty bullets). For example, if the release is
1.3.0, then you’ll run:

./update_version.sh 1.4.0~rc1

b. Disregard the script-generated .tag file since this is only used when we are making an actual release.

c. Sign the commit that was added by update_version.sh:

git commit --amend --gpg-sign

d. Make a PR to merge these changes into develop.

3. Monitor the FPF support portal for any new user issues related to the release.

30.4 Releases that only modify code on Tails workstations
On occasion, a point release may only modify code that is deployed to Tails-based Admin Workstations and Journalist
Workstations. Even in those cases, it is generally preferred to issue a release that also updates the server packages
(bumping the version number):

• This ensures that users attentive to version numbers are not confused by the discrepancy between the version
shown on their workstations compared with the version number shown in other parts of the SecureDrop user
interface.

• It also mitigates the risk of any unexpected side effects. Notably, our uptime monitoring of known SecureDrop
instances checks for differences between the version number returned by a server’s metadata endpoint, and the
latest GitHub release object.

If, because of time sensitivity and team availability, a release manager decides to proceed with a workstation-only
release, they should observe the following:

• As with regular releases, create tags for any release candidates and test the expected behavior on Admin and
Journalist Workstations as appropriate.

• Coordinate with the infrastructure team to ensure that uptime monitoring will not alert on the discrepancy be-
tween server-side version numbers and the latest release object on GitHub.

• After the release passes QA, push a signed tag. This will enable the graphical updater on Tails workstations to
detect the new release.

• Follow the standard release communications process, including publication of a release object on GitHub. Make
note of the fact that this is a workstation-only release (see the SecureDrop 2.6.1 release communications as an
example).

128 Chapter 30. Release Management

https://support.freedom.press
https://securedrop.org/news/securedrop-261-released/

CHAPTER

THIRTYONE

BUILD METADATA

When we build packages to ship to users, we save and publish build metadata. Currently this happens in the form of
build logs and .buildinfo files, both of which are published to the build-logs repository.

31.1 Build logs
When you build a package for release, you should should save your terminal output, including:

• Checking out the build tag and verifying that it is signed with the release key

• make build-debs (or equivalent) output

• SHA256 checksums of the built packages

These should be committed into the corresponding folder in the build-logs repository.

The goal with these build logs is to have a clear record of what happened during the build process for the purpose of
retrospectives. This can help us determine if mistakes are made during the build (since some of the process is manual)
and for incident response.

31.2 buildinfo
.buildinfo files record information about the environment used to build the package so that an external user can
recreate that environment and reproduce the package. See the Debian documentation for more details.

When produced by a build, these .buildinfo files should be committed into the buildinfo/ folder. As these files
also contain SHA256 checksums of the packages, checksums can be omitted from the build log.

These are not yet generated for RPM packages.

129

https://github.com/freedomofpress/build-logs
https://wiki.debian.org/ReproducibleBuilds/BuildinfoFiles
https://github.com/freedomofpress/securedrop-builder/issues/418

SecureDrop Developer Documentation, Release latest

130 Chapter 31. Build metadata

CHAPTER

THIRTYTWO

LINUX KERNEL MAINTENANCE

We build and publish our own Linux kernels with additional grsecurity hardening patches. This process is automated
in the kernel-builder repository.

1. Follow the instructions in kernel-builder for building and uploading new kernel packages.

2. Once the new packages have been reviewed and merged in the securedrop-apt-test repository, they will be auto-
matically tested on the hardware we maintain in our kernel test farm.

3. Wait for sdcibot to file a New Linux kernel ticket (example) in the securedrop repository with its test results.

4. The packages can then be promoted to securedrop-apt-prod.

32.1 Testing a new kernel manually
These are the steps sdcibot performs in its automatic testing of new kernel packages on all of our recommended
hardware:

1. Install the new kernel packages on your Monitor Server using unattended-upgrades, e.g. sudo apt update &&
sudo unattended-upgrades --debug or wait for the automatic nightly upgrade.

2. Reboot. Verify with uname -r that you are using the new kernel.

3. If it doesn’t boot, see the Troubleshooting Kernel Updates documentation.

4. Install the paxtest package, run with sudo paxtest blackhat, and verify it doesn’t return any new errors
nor warnings.

5. Install spectre-meltdown-checker and the binutils package, run with sudo ./meltdown-checker, and verify
it doesn’t return any errors nor warnings.

6. Upgrade your Application Server to the new kernel and reboot.

You may optionally also:

7. Run basic smoke tests of SecureDrop by verifying you can send a submission and a journalist can reply.

131

https://grsecurity.net/
https://github.com/freedomofpress/kernel-builder/
https://github.com/freedomofpress/kernel-builder/
https://github.com/freedomofpress/securedrop-apt-test
https://github.com/freedomofpress/securedrop/blob/kernel-test/install_files/ansible-base/roles/kernel-test/files/kernel-auto-test.py
https://github.com/freedomofpress/securedrop/blob/kernel-test/install_files/ansible-base/roles/kernel-test/files/kernel-auto-test.py
https://github.com/freedomofpress/securedrop/issues/7482
https://github.com/freedomofpress/securedrop
https://github.com/freedomofpress/securedrop-apt-prod
https://github.com/freedomofpress/securedrop/blob/kernel-test/install_files/ansible-base/roles/kernel-test/files/kernel-auto-test.py
https://docs.securedrop.org/en/stable/hardware.html#application-and-monitor-servers
https://docs.securedrop.org/en/stable/hardware.html#application-and-monitor-servers
https://docs.securedrop.org/en/stable/kernel_troubleshooting.html
https://github.com/speed47/spectre-meltdown-checker/

SecureDrop Developer Documentation, Release latest

132 Chapter 32. Linux kernel maintenance

CHAPTER

THIRTYTHREE

RUST TOOLCHAIN MAINTENANCE

Unlike Python, which we get from Debian packages, we manage our own Rust toolchain in the SecureDrop server dev
environment and package builder.

Rust releases new versions every 6 weeks. We aim to stay within 2-3 versions of the latest stable release, which allows
us to update (at minimum) every 3-5 months.

33.1 Upgrading the toolchain
The Rust version is specified in a number of files, including:

• rust-toolchain.toml

• Package builder’s Dockerfile

• Dev environment’s Dockerfile

• CI manifests

It is recommended to grep for the old version string to find any other places it might also be used.

As of this writing, Rust code is used by Sequoia-PGP redwood bridge and cryptography dependency. The following
test plan can be used for smoke testing those:

* [] CI passes, including deb building and staging build
* [] Build new debs, deploy on a staging/prod instance:
* [] Create a new source, upload a file.
* [] Create new journalist, log in as them.
* [] As the journalist, download the file and successfully decrypt it.

133

SecureDrop Developer Documentation, Release latest

134 Chapter 33. Rust toolchain maintenance

CHAPTER

THIRTYFOUR

UPDATING TOR

Given SecureDrop’s significant reliance on Tor via Onion Services, we test new Tor versions to ensure they don’t break
SecureDrop before releasing them to users.

34.1 Identifying new releases
Announcements for new Tor releases are posted in the Tor forum.

Our continuous integration automatically checks for new Tor packages every night and should commit them to the
securedrop-apt-test repository. Within 15 minutes they should be available for download via apt-test.freedom.
press.

34.2 Testing
Use a staging environment to verify that with the new Tor release, SecureDrop functions properly as an Onion Service,
both the Source Interface and protected Journalist Interface.

Then install the new Tor release on a production environment. Wait a day so it goes through the unattended-upgrades
cycle, confirming that after the nightly reboot, Tor is still on the new version and running as expected.

34.3 Promoting
To promote a Tor release to production, copy the *.deb files over to the securedrop-apt-prod repository and follow
those instructions.

135

https://forum.torproject.net/c/news/tor-release-announcement/28
https://github.com/freedomofpress/securedrop-apt-test
https://github.com/freedomofpress/securedrop-apt-prod

SecureDrop Developer Documentation, Release latest

136 Chapter 34. Updating Tor

CHAPTER

THIRTYFIVE

SETTING UP THE SECUREDROP WORKSTATION

The SecureDrop Workstation based on Qubes OS is a project currently in the beta stages of software development which
aims to improve journalists’ experience working with SecureDrop while retaining the current security and privacy
features SecureDrop provides.

Installing the project requires an up-to-date Qubes 4.2 installation running on a machine with at least 16GB of RAM
(32 GB recommended).

The project is currently in open beta. See our blog post for more information. if you are interested in using SecureDrop
Workstation, please reach out to us via the support portal. Documentation for end users is being developed here. The
instructions below are intended for developers.

35.1 Install Qubes
Before trying to use this project, install Qubes 4.2.1 on your development machine. Accept the default VM configuration
during the install process.

After installing Qubes, you must update both dom0 and the base templates to include the latest versions of apt packages.
Open a terminal in dom0 by clicking on the Qubes menu top-right of the screen and left-clicking on Terminal Emulator
and run:

sudo qubes-dom0-update

After dom0 updates complete, reboot your computer to ensure the updates have been properly applied. Finally, update
all existing TemplateVMs:

qubes-update-gui

Select all VMs marked as updates available, then click Next. Once all updates have been applied, you’re ready to
proceed. Choose the environment that you wish to set up and then follow the applicable instructions:

• The staging environment uses the yum-test.securedrop.org and apt-test.freedom.press repositories,
and is configured to use the main component for apt packages. It will typically install the most recent release
candidate packages (which could be more recent than the production packages if a release is underway).

• The development environment uses the yum-test.securedrop.org and apt-test.freedom.press reposi-
tories, and is configured to use the nightly and main components for apt packages. This means it will install
nightly packages, unless a package is only available in main, or a version with a higher version number has been
published there.

This configuration does not alter your management settings on your laptop to prevent suspension to disk (a
security measure for production environments, which the staging environment preserves to be more faithful to
prod-like settings).

137

https://www.qubes-os.org/
https://securedrop.org/news/securedrop-workstation-1_0_0-released/
https://docs.securedrop.org/en/stable/getting_support.html
https://workstation.securedrop.org
https://www.qubes-os.org/downloads/

SecureDrop Developer Documentation, Release latest

• The production environment uses yum.securedrop.org and apt.freedom.press repositories, verified using
the production signing key. Its setup is not covered below; see our production install docs for details.

35.2 Development Environment

35.2.1 Download, Configure, Copy to dom0
This repository contains the specification for an RPM package, which contains the provisioning logic. By following
the instructions below, you will build this RPM package locally from a git checkout in your development VM, copy it
to dom0, install it, and run the provisioning code to set up a SecureDrop Workstation in the development environment
configuration.

Decide on a VM to use for development. We recommend creating a standalone VM called sd-dev by following these
instructions.

Clone the securedrop-workstation repo to your preferred location on that VM.

Qubes provisioning is handled by Salt on dom0, so this project must be copied there from your development VM.

Note

Understand that copying data to dom0 goes against the grain of the Qubes security philosophy, and should only
done with trusted code and for very specific purposes, such as Qubes-related development tasks. Still, be aware of
the risks, especially if you rely on your Qubes installation for other sensitive work.

That process is a little tricky, but here’s one way to do it: assuming this code is checked out in your sd-dev VM at
/home/user/projects/securedrop-workstation, run the following in dom0:

qvm-run --pass-io sd-dev 'tar -c -C /home/user/projects/ securedrop-workstation' | tar␣
→˓xvf -

(Be sure to include the space after /home/user/projects/.) After that initial manual step, the code in your de-
velopment VM may be copied into place on dom0 by setting the SECUREDROP_DEV_VM and SECUREDROP_DEV_DIR
environmental variables to reflect the VM and directory to which you’ve cloned this repo, and running make clone
from the root of the project on dom0:

[dom0]$ export SECUREDROP_DEV_VM=sd-dev # set to your dev VM
[dom0]$ export SECUREDROP_DEV_DIR=/home/user/projects/securedrop-workstation # set to␣
→˓your working directory
[dom0]$ cd ~/securedrop-workstation/
[dom0]$ make clone # build RPM package and copy repo to dom0

NOTE: The destination directory on dom0 is not customizable; it must be securedrop-workstation in your home
directory.

If you plan to work on the SecureDrop Client code, also run this command in dom0:

qvm-tags sd-dev add sd-client

Doing so will permit the sd-dev AppVM to make RPC calls with the same privileges as the sd-app AppVM.

138 Chapter 35. Setting up the SecureDrop Workstation

https://workstation.securedrop.org/en/stable/admin/install/overview.html
https://developers.securedrop.org/en/latest/setup_development.html#qubes
https://developers.securedrop.org/en/latest/setup_development.html#qubes
https://www.qubes-os.org/doc/how-to-copy-from-dom0/#copying-to-dom0
https://github.com/freedomofpress/securedrop-client

SecureDrop Developer Documentation, Release latest

35.2.2 Run Development SecureDrop Server
Here, you will setup a development version of the SecureDrop server to which your workstation will connect. Alterna-
tively, you can setup virtualized staging environments on Qubes OS, which is slightly more involved.

• Setup a SecureDrop (server) development environment on Qubes.

Note

You will need to run the following step every time that you want to login on SecureDrop client.

• Start the securedrop server in sd-dev qube with use make dev-tor

35.2.3 Configure the Workstation
In the output of the make dev-tor command ran in the previous section, there should be a section that looks like this:

{
"submission_key_fpr": "65A1B5FF195B56353CC63DFFCC40EF1228271441",
"hidserv": {

"hostname": "jpweqok4r43xp4si5pattodglw2btdqlpz2utvn4mkwnx2iwbmp4v2id.onion",
"key": "DAZHRYYKWHQCIRUMEVIRSOUZA4MKU4C7WPDWLIVB3TMZWZH2V5MA"

},
"environment": "prod",
"vmsizes": {

"sd_app": 10,
"sd_log": 5

}
}

Save this text in the file securedrop-workstation/config.json.

Next, set the default encryption key (for development purposes only):

cd securedrop-workstation
cp sd-journalist.sec.example sd-journalist.sec

Then, in dom0, clone the workstation again, to obtain these new files:

[dom0]$ cd ~/securedrop-workstation/
[dom0]$ make clone

35.2.4 Provision the VMs
Once the configuration is done and this directory is copied to dom0, you must update existing Qubes templates and
use make to handle all provisioning and configuration by your unprivileged user. Before you do so, you may wish to
increase the scrollback in the dom0 terminal from 1000 (the default) to 100000 or unlimited, to ensure you can review
any errors in the verbose output.

Then run the following command to set up a development environment:

make dev

Note that this target automatically sets the environment variable in config.json to dev, regardless of its current
value, before provisioning. It identifies the latest RPM you have built (using scripts/prep-dev), installs it, and runs
the sdw-admin --apply command to provision the SecureDrop Workstation.

35.2. Development Environment 139

SecureDrop Developer Documentation, Release latest

The build process takes quite a while. You will be presented with a dialog asking how to connect to Tor: you should
be able to select the default option and continue. If you want to refer back to the provisioning log for a given VM,
go to /var/log/qubes/mgmt-<vm name>.log in dom0. You can also monitor logs as they’re being written via
journalctl -ef. This will display logs across the entire system so it can be noisy. It’s best used when you know
what to look for, at least somewhat, or if you’re provisioning one VM at a time.

When the installation process completes, a number of new VMs will be available on your machine, all prefixed with
sd-.

35.2.5 Editing the configuration
When developing on the Workstation, make sure to edit files in sd-dev, then copy them to dom0 via make clone
&& make dev to reinstall them. Any changes that you make to the ~/securedrop-workstation folder in dom0 will be
overwritten during make clone. Similarly, any changes you make to e.g. /srv/salt/ in dom0 will be overwritten
by make dev.

35.3 Staging Environment

35.3.1 Update dom0, fedora-40-xfce, whonix-gateway-17 and
whonix-workstation-17 templates

Updates to these VMs will be performed by the installer and updater, but updating them prior to install makes it easier
to debug any errors.

Before proceeding to updates, we must ensure that sys-whonix can bootstrap to the Tor network. In the Qubes menu,
navigate to sys-whonix and click on Anon Connection Wizard and click Next and ensure the Tor Bootstrap process
completes successfully.

In the Qubes Menu, select the cog icon to access the Settings submenu, navigate to Qubes Tools and click on Qubes
Update. In the updater, select all VMs in the list, then click Next and wait for updates to complete.

35.3.2 Choose your installation method
You can install the staging environment in two ways:

• If you have an up-to-date clone of this repo with a valid configuration in dom0, you can use the make staging
target to provision a staging environment. Prior to provisioning, make staging will set your config.json
environment to staging.

• If you want to download a specific version of the RPM, and follow a verification procedure similar to that used
in a production install, follow the process in the following sections.

35.3.3 Download and install securedrop-workstation-dom0-config package
Since dom0 does not have network access, we will need to download the securedrop-workstation-dom0-config
package in a Fedora-based VM. We can use the default Qubes-provisioned work VM. If you perform these changes in
the work VM or another AppVM, they won’t persist across reboots (recommended).

In a terminal in work, run the following commands:

1. Import the test signing key:

[user@work ~]$ wget https://raw.githubusercontent.com/freedomofpress/securedrop-
→˓workstation/master/sd-workstation/apt-test-pubkey.asc
[user@work ~]$ sudo rpmkeys --import apt-test-pubkey.asc

2. Configure the test repository

140 Chapter 35. Setting up the SecureDrop Workstation

SecureDrop Developer Documentation, Release latest

Populate /etc/yum.repos.d/securedrop-temp.repo with the following contents:

[securedrop-workstation-temporary]
enabled=1
baseurl=https://yum-test.securedrop.org/workstation/dom0/f37
name=SecureDrop Workstation Qubes initial install bootstrap

3. Download the RPM package

[user@work ~]$ dnf download securedrop-workstation-dom0-config

The RPM file will be downloaded to your current working directory.

4. Verify RPM package signature

[user@work ~]$ rpm -Kv securedrop-workstation-dom0-config-x.y.z-1.fc37.noarch.rpm

The output should match the following, and return OK for all lines as follows:

securedrop-workstation-dom0-config-x.y.z-1.fc37.noarch.rpm:
Header V4 RSA/SHA256 Signature, key ID 2211b03c: OK
Header SHA1 digest: OK
V4 RSA/SHA256 Signature, key ID 2211b03c: OK
MD5 digest: OK

5. Transfer and install RPM package in dom0

Note

Understand that copying data to dom0 goes against the grain of the Qubes security philosophy, and should only
done with trusted code and for very specific purposes, such as Qubes-related development tasks. Still, be aware of
the risks, especially if you rely on your Qubes installation for other sensitive work.

In dom0, run the following commands (changing the version number to its current value):

[dom0]$ qvm-run --pass-io work 'cat /home/user/securedrop-workstation-dom0-config-x.y.z-
→˓1.fc37.noarch.rpm' > securedrop-workstation.rpm
sudo dnf install securedrop-workstation.rpm

The provisioning scripts and tools should now be in place, and you can proceed to the workstation configuration step.

35.3.4 Configure the Workstation
Your workstation configuration will reside in /usr/share/securedrop-workstation-dom0-config/ and will
contain configuration information specific to your SecureDrop instance:

1. Populate config.json with your instance-specific variables. Set environment to staging

2. Move your submission private key to sd-journalist.sec

35.3.5 Provision the VMs
In a terminal in dom0, run the following commands:

[dom0]$ sdw-admin --apply

35.3. Staging Environment 141

https://www.qubes-os.org/doc/how-to-copy-from-dom0/#copying-to-dom0

SecureDrop Developer Documentation, Release latest

142 Chapter 35. Setting up the SecureDrop Workstation

CHAPTER

THIRTYSIX

SECUREDROP WORKSTATION DEVELOPMENT

This project’s development requires different workflows for working on provisioning components and working on
submission-handling scripts.

For developing salt states and other provisioning components, work is done in a development VM and changes are
made to individual state and top files there. In the dom0 copy of this project:

• make clone is used to build a new version of the RPM and copy the contents of your working directory (includ-
ing the RPM) from your development VM to dom0

• make <vm-name> can be used to rebuild an individual VM

• make dev installs the latest locally present RPM and performs the full installation.

Note that make clone requires two environment variables to be set: SECUREDROP_DEV_VM must be set to the name of
the VM where you’ve been working on the code, the SECUREDROP_DEV_DIR should be set to the directory where the
code is checked out on your development VM.

For work on components such as the SecureDrop Client, see their individual readmes in the securedrop-client reposi-
tory:

36.1 Testing
Tests should cover two broad domains. First, we should assert that all the expected VMs exist and are configured as we
expect (with the correct NetVM, with the expected files in the correct place). Second, we should end-to-end test the
document handling scripts, asserting that files present in the sd-proxy VM correctly make their way to the sd-app
AppVM, and are opened correctly in disposable VMs.

36.1.1 Configuration Tests
These tests assert that expected scripts and configuration files are in the correct places across the VMs. These tests can
be found in the tests/ directory. They can be run from the project’s root directory on dom0 with:

make test

Note that since tests confirm the states of provisioned VMs, they should be run after all the VMs have been built with
make dev.

Individual tests can be run with make <test-name>, where test-name is one of test-base, test-app,
test-proxy, test-whonix or test-gpg.

Be aware that running tests will power down running SecureDrop VMs, and may result in data loss. Only run tests in
a development / testing environment.

143

https://github.com/freedomofpress/securedrop-client

SecureDrop Developer Documentation, Release latest

36.2 Automatic updates
Double-clicking the “SecureDrop” desktop icon will launch a preflight updater that applies any necessary updates to
VMs, and may prompt a reboot. In a development environment, this will install the latest nightly packages (unless a
package with a higher version number is available on apt-test in main), and the latest RPM published to yum-test.

36.3 Manually updating dom0 code
To update code in dom0 manually, e.g., to a specific branch or tag of this repository, use the sd-dev AppVM that
was created during the install. For example, to build a specific tag, from your checkout directory, run the following
commands (replace <tag> with the tag of the release you are working with):

git fetch --tags
git tag -v <tag>
git checkout <tag>

In dom0:

make clone
make dev

The make clone command will build a new version of the RPM package that contains the provisioning logic in your
development VM (e.g., sd-dev) and copy it to dom0.

36.4 Building workstation Debian packages
Debian packages for the SecureDrop Workstation components are maintained in a separate repository: https://github.
com/freedomofpress/securedrop-client/

36.5 Building workstation RPM packages
make build-rpm

The build runs in a container and requires either Docker or Podman to be installed.

144 Chapter 36. SecureDrop Workstation Development

https://github.com/freedomofpress/securedrop-client/
https://github.com/freedomofpress/securedrop-client/

CHAPTER

THIRTYSEVEN

SECUREDROP WORKSTATION RELEASE MANAGEMENT

SecureDrop Workstation code spans across two repositories:

• https://github.com/freedomofpress/securedrop-client (Debian packages)

• https://github.com/freedomofpress/securedrop-workstation (RPM package)

The components in the Debian packages are all released together, while the workstation RPM package is released
independently.

145

https://github.com/freedomofpress/securedrop-client
https://github.com/freedomofpress/securedrop-workstation

SecureDrop Developer Documentation, Release latest

146 Chapter 37. SecureDrop Workstation Release Management

CHAPTER

THIRTYEIGHT

RELEASE A DEBIAN PACKAGE

Releasing a release candidate (RC) package is the first step before you begin QA or any signing ceremonies. Even when
you are releasing a hotfix, RC packages are still recommended for QA purposes.

Production releases will require at least two maintainers, one of which will need access to the SecureDrop release key.

38.1 Step 0: Tracking issue
Before beginning the release proces, create a tracking issue titled Release <package name> <version>. It should
contain estimated timelines and assignees for release management, QA, and stakeholder communications. Pin the issue
for ease of access and visibility.

38.2 Step 1: Create a release candidate (RC) tag
1. Create a release branch named release/<major>.<minor>.<patch>.

2. Ensure that the version is set to the expected value; if not, increment it as needed using update_version.sh.

3. Push a commit adding the changelog for this release.

4. Push an RC tag in the format <major>.<minor>.<patch>~rcN on your new commit. We will be building from
this tag in the next step.

5. Unless this is a patch-level release, create a PR to bump the version on main to <major>.<minor+1>.
<patch>-rc1. In other words, if you are in the process of releasing 0.5.0, main should be bumped to 0.
6.0-rc1.

38.3 Step 2: Build and deploy the package to apt-test
1. Clone securedrop-client and securedrop-builder.

git clone git@github.com:freedomofpress/securedrop-client.git
git clone git@github.com:freedomofpress/securedrop-builder.git

2. Check out the newly pushed tag and then build the packages.

cd securedrop-client
git checkout <major>.<minor>.<patch>~rcN
make build-debs

3. Save and publish build metadata.

4. Open a PR to https://github.com/freedomofpress/securedrop-apt-test with the packages you want to deploy. Once
merged, the packages will be deployed to https://apt-test.freedom.press.

147

https://github.com/freedomofpress/securedrop-apt-test
https://apt-test.freedom.press

SecureDrop Developer Documentation, Release latest

38.4 Step 3: Begin QA
You can now start the QA process! If a bug is found, a fix should be developed, merged into the main branch and
cherry-picked into the release branch. If desired, release another RC set of packages for further testing.

Once QA testers are satisfied with the packages, you are ready to move on to the next step.

38.5 Step 4: Create a release tag
1. Update the changelog and version. Remove any references to the RC versions from the changelogs.

2. Generate a release tag named <major>.<minor>.<patch> (same as the previous tags, without the ~rcN part).

3. Sign the tag with the SecureDrop release key or ask another maintainer to do this and push the signed tag

38.6 Step 5: Build and deploy the packages to apt-qa
1. Clone securedrop-client and securedrop-builder.

git clone git@github.com:freedomofpress/securedrop-client.git
git clone git@github.com:freedomofpress/securedrop-builder.git

2. Check out the newly pushed tag and then build the packages.

cd securedrop-client
git tag -v <major>.<minor>.<patch> # Signed by SecureDrop Release Key
git checkout <major>.<minor>.<patch>
make build-debs

3. Save and publish build metadata.

4. Add your packages to a new branch called release in https://github.com/freedomofpress/securedrop-apt-prod.
Include all .deb packages built by the client, including -dbgsym packages. -dbgsym packages belong in the
main-debug component repo. See Notes on dbgsym-packages for more information.

5. Update the apt repo distribution files by running ./tools/publish and push those changes to the release
branch as well.

6. Regenerate and sign the apt release file or ask another maintainer to do this. The packages will now be installable
from https://apt-qa.freedom.press.

7. Open a PR to merge the release branch into main.

8. Another maintainer should also build the packages (following the same steps as earlier) and verify their newly
built packages are bit-for-bit identical to those pushed to apt-qa.

38.7 Step 6: Perform the apt-qa preflight check
First, provision a production workstation from the most recently-released securedrop-workstation-dom0-config
production package. Ensure your machine has been updated (either via Qubes native updater or SDW GUI updater).

At minimum, perform the full test. Additional QAers may perform smoketest to save time if there is already full test
coverage.

Full test (includes updater)

1. As root, edit /srv/salt/sd-default-config.yml so that the prod apt_repo_url points to https://
apt-qa.freedom.press.

148 Chapter 38. Release a Debian package

https://github.com/freedomofpress/securedrop-apt-prod
https://apt-qa.freedom.press
https://reproducible-builds.org/docs/definition/

SecureDrop Developer Documentation, Release latest

2. Run the SDW GUI updater. To force an updater run, invoke the updater via /opt/securedrop/launcher/
sdw-launcher.py --skip-delta 0.

3. Start the Client application, and observe the updated version string, indicating the required packages were in-
stalled. Perform testing according to the test plan.

Smoketest (no updater run)

1. Start the Template VMs.

2. In each template VM, edit /etc/apt/sources.list.d/securedrop_workstation.list file to point to
https://apt-qa.freedom.press.

3. Update the package system and install the new packages via apt update && apt upgrade -y.

4. Verify that the updated packages were installed in the templates. Shut down template VMs and all VMs associated
with SecureDrop Workstation.

5. Start the Client application and perform testing according to test plan.

38.8 Step 7: Deploy the package to apt-prod
1. In securedrop-apt-prod, merge the release branch into main to deploy your package to https://apt.freedom.

press.

2. Once you see the package land on https://apt.freedom.press, run the updater to install it in a production environ-
ment and ensure that it works as expected.

3. In the source repository (e.g., securedrop-client), port the changelog to the main branch. Ensure that the
version number on main designates it as RC1 for the next release.

38.8. Step 7: Deploy the package to apt-prod 149

https://apt-qa.freedom.press
https://apt.freedom.press
https://apt.freedom.press
https://apt.freedom.press

SecureDrop Developer Documentation, Release latest

150 Chapter 38. Release a Debian package

CHAPTER

THIRTYNINE

RELEASE AN RPM PACKAGE

39.1 Release securedrop-workstation-dom0-config
1. Verify the tag of the project you wish to build: git tag -v VERSION and ensure the tag is signed with the

official release key.

2. git checkout VERSION

3. Now you are ready to build. Build RPMs following the documentation in an environment sufficient for building
production artifacts. For securedrop-workstation you run make build-rpm to build the RPM.

4. sha256sum the built RPM (and store hash in the build logs/commit message).

5. Commit the (unsigned) version of this RPM to the release branch in the securedrop-yum-prod repository.

6. Copy the RPM to the signing environment.

7. Verify integrity of RPM prior to signing (use sha256sums to compare). Note for reviewers: Using rpm
--delsign on a signed artifact (for example, a release candidate) in order to verify the checksum of the un-
signed .rpm file must be done in the same type of build environment (Linux distribution and rpm version) as the
.rpm was built in, or the checksums may not match.

8. Sign RPM in place (see Signing section below).

9. Move the signed RPM back to the environment for committing to the lfs repository.

10. Save and publish build metadata.

11. Commit the RPM in a second commit on the release branch in securedrop-yum-prod.

12. Run the ./tools/publish script to update repository metadata and commit the result.

13. Create a PR to merge release into main. At this point, the package will be available on yum-qa.securedrop.org.

14. Once the PR is merged, the changes will be available on yum.securedrop.org.

151

https://github.com/freedomofpress/securedrop-yum-prod
https://github.com/freedomofpress/securedrop-yum-prod
https://yum-qa.securedrop.org
https://yum.securedrop.org

SecureDrop Developer Documentation, Release latest

152 Chapter 39. Release an RPM package

CHAPTER

FORTY

SIGNING PROCEDURES

40.1 Sign the tag with the SecureDrop release key
1. If the tag does not already exist, create a new annotated and unsigned tag: git tag -a VERSION.

2. Output the tag to a file: git cat-file tag VERSION > VERSION.tag.

3. Copy the tag file into your signing environment and then verify the tag commit hash.

4. Sign the tag with the SecureDrop release key: gpg --armor --detach-sign VERSION.tag.

5. Append ASCII-armored signature to tag file (ensure there are no blank lines): cat VERSION.tag.sig >>
VERSION.tag.

6. Move tag file with signature appended back to the release environment.

7. Delete old unsigned tag: git tag -d VERSION.

8. Create new signed tag: git mktag < VERSION.tag > .git/refs/tags/VERSION.

9. Verify the tag’s signature: git tag -v VERSION.

10. Push the tag to the shared remote: git push origin VERSION.

40.2 Regenerate and sign the apt release file
1. From the release branch containing the new package, update the apt repository distribution files.

git clone https://github.com/freedomofpress/securedrop-apt-prod
cd securedrop-apt-prod
git checkout -b release
./tools/publish

2. Copy the regenerated file called Release into your signing environment and then verify the hash to ensure the
file transfer was successful.

3. Sign the Release file with the SecureDrop release key.

gpg --armor --detach-sign Release

4. Copy the Release.gpg file into your release environment and move it to repo/public/dists/
<debian-codename>/ on your release branch.

5. Verify that the release file was signed with the production key.

gpg --verify ./repo/public/dists/<debian-codename>/Release{.gpg,}

153

SecureDrop Developer Documentation, Release latest

40.3 Sign the RPM package
The entire RPM must be signed. This process also requires a Fedora machine/VM on which the GPG signing key
(either in GPG keyring or in qubes-split-gpg) is setup. You will need to add the public key to RPM for verification (see
below).

rpm -Kv indicates if digests and sigs are OK. Before signature it should not return signature, and rpm -qi <file>.
rpm will indicate an empty Signature field. Set up your environment (for prod you can use the ~/.rpmmacros example
file at the bottom of this section):

sudo dnf install rpm-build rpm-sign # install required packages
echo "vault" | sudo tee /rw/config/gpg-split-domain # edit 'vault' as required
cat << EOF > ~/.rpmmacros
%_signature gpg
%_gpg_name <gpg_key_id>
%__gpg /usr/bin/qubes-gpg-client-wrapper
%__gpg_sign_cmd %{__gpg} --no-verbose -u %{_gpg_name} --detach-sign %{__plaintext_
→˓filename} --output %{__signature_filename}
EOF

Now we’ll sign the RPM:

rpm --resign <name>.rpm # --addsign would allow us to apply multiple signatures to the␣
→˓RPM
rpm -qi <name>.rpm # should now show that the file is signed
rpm -Kv <name>.rpm # should contain NOKEY errors in the lines containing Signature
This is because the (public) key of the RPM signing key is not present,
and must be added to the RPM client config to verify the signature:
sudo rpm --import <publicKey>.asc
rpm -Kv <name>.rpm # Signature lines will now contain OK instead of NOKEY

You can then proceed with distributing the package, via the “test” or “prod” repo, as appropriate.

154 Chapter 40. Signing procedures

CHAPTER

FORTYONE

POST-RELEASE TASKS

1. Ensure release communications have been published.

2. Run the updater on a production setup once packages are live, and conduct a smoketest (successful updater run,
and basic functionality if updating client packages).

3. Backport changelog commit(s) with git cherry-pick -x from the release branch into the main development
branch, and sign the commit(s). In a separate commit, run the update_version.sh script to bump the version
on main to the next minor version’s rc1. Open a PR with these commits; this PR can close the release tracking
issue.

155

SecureDrop Developer Documentation, Release latest

156 Chapter 41. Post-Release tasks

CHAPTER

FORTYTWO

SECUREDROP CLIENT DEVELOPMENT

As part of the ongoing work to make an integrated journalist-friendly workstation for SecureDrop we have created
a native client application to be run within the Qubes operating system. It helps journalists with the most common
activities associated with using SecureDrop in a user friendly manner.

Currently the client is alpha quality although work is ongoing in terms of improving features and the user interface.

The source code, and related issues are hosted on GitHub.

42.1 Developer Setup
You may find developer setup instructions in the SecureDrop Client README.

42.2 How to Find Help
If you would like to report a problem submit a new issue.

If you’d like to chat with other developers working on the client drop into our Gitter chat channel for the project.

Every non-public holiday weekday (except Fridays) at 10am (Pacific Time) we take part in a public daily stand-up,
usually via a meeting on Google Meet. Connection information for standups is published periodically on the Gitter
channel. All are welcome to contribute.

Otherwise, read on.

42.3 Client Architecture
The SecureDrop client is a PyQt application. It’s written using Python 3.11 and the Python bindings for the Qt UI
framework (PyQt).

In the root directory of the repository are two important directories: securedrop_client (containing the application
code) and tests containing our unit tests. You’ll also find a Makefile in the root directory which defines commands
to run commonly needed activities. Type, make to find out what commands are available.

The code in the securedrop_client namespace is organised in the following way:

• app.py - starts and configures the application.

• logic.py - contains the application logic, encapsulated in the Client class.

• db.py - holds all the SQLAlchemy ORM model definitions for interacting with the local Sqlite database.

• storage.py - contains the functions needed for interacting with a remote SecureDrop API and the local database.

• utils.py - generic utility functions needed throughout the application.

157

https://github.com/freedomofpress/securedrop-client
https://github.com/freedomofpress/securedrop-client/blob/HEAD/README.md
https://github.com/freedomofpress/securedrop-client/issues/new
https://gitter.im/freedomofpress/securedrop
https://riverbankcomputing.com/software/pyqt/intro
https://www.sqlalchemy.org/

SecureDrop Developer Documentation, Release latest

• gui - this namespace contains two modules: main.py (containing the Window class through which all interac-
tions with the user interface should happen) and widgets.py (containing all the custom widgets used by the
Window class to draw the user interface).

We try very hard to keep the application logic and UI code cleanly separated. Furthermore, we try equally hard to ensure
the main GUI code always remains unblocked. For instance look at how the APICallRunner is used in logic.py to
make unblocked network calls to the remote API.

We encourage developers to make sure all classes, methods and functions have docstrings describing the intention
behind the code. Obviously, it’s important that such docstrings remain up to date as the code evolves.

We make use of ruff, mypy, and other linting tools to standardize code style. Please run make lint locally from both the
project root and the client directories before submitting a PR.

42.4 Client Database Structure
For a better understanding of the SecureDrop Client application architecture, a high-level view of its database structure
has been provided:

158 Chapter 42. SecureDrop Client Development

SecureDrop Developer Documentation, Release latest

42.4. Client Database Structure 159

SecureDrop Developer Documentation, Release latest

42.5 Tests
The files and directory structure found within the tests directory mirrors that of the files and directories in
securedrop_client. For instance, all the unit tests for the securedrop_client/logic.py module can be found
in the tests/test_logic.py file.

To run the complete test suite simply type:

make check

Our code style checkers, full test suite and coverage checker will run and report any errors.

We use the PyTest testing framework for writing and running our unit tests. We expect every test to have an associated
comment which describes the intent of the test. As far as possible, tests should be self contained with all the context
needed to understand them within each individual unit test (this makes it easier to debug things when the test suite fails
as the codebase evolves).

Take a look in any of the test files to see the sort of code we expect for unit tests.

We currently have, and expect to maintain, 100% unit test coverage of our code base. If you’re unsure how to achieve
this, please don’t hesitate to get in touch via Gitter or mention this in your description of any pull requests you submit.

42.6 Contributing
Our open issues are on GitHub.

Please remember that we have a Code of Conduct and expect all contributors to abide by it.

Before submitting a pull request, make sure the test suite passes (make check), because our CI tools will flag broken
tests before we’re able to merge your code into main.

Most of all, please don’t hesitate to get in touch if you need help, advice or would like guidance.

Thank you for your support!

160 Chapter 42. SecureDrop Client Development

https://docs.pytest.org/en/latest/
https://github.com/freedomofpress/securedrop-client/issues
https://github.com/freedomofpress/.github/blob/main/CODE_OF_CONDUCT.md

INDEX

T
translation freeze, 37

161

	Contributing to SecureDrop
	Programmers
	SecureDrop Workstation, Client, and supporting applications
	SecureDrop Server
	Preparing and submitting changes

	Technical Writers
	UX Contributors
	Translators

	Setting Up the Development Environment
	Overview
	Quick Start
	Ubuntu or Debian GNU/Linux
	Fedora Linux
	macOS
	Qubes
	Fork & Clone the Repository
	Using the Docker Environment
	Persistent storage

	Setting Up a Multi-Machine Environment
	Ubuntu or Debian GNU/Linux
	macOS
	Fork & Clone the Repository
	Install Python Requirements
	Qubes

	Making a PR to SecureDrop
	Forking and Cloning the Project
	Make Your Changes and Push to the Fork
	Create a Branch
	Make Your Changes and Commit
	Pull the Upstream Changes
	Rebasing
	Pushing the Changes to GitHub Fork

	Making a Pull Request to Get Your Changes Merged in develop Branch

	Translations
	Quick Start Guide
	Getting help
	How is SecureDrop translated?
	When does SecureDrop’s translation happen?
	Workflow Diagram
	Translation Responsibilities
	Tutorial for Developers

	Weblate
	Get started using Weblate
	How to register an account on Weblate using an email address
	How to register an account on Weblate using a GitHub account
	How to manage your preferred languages on Weblate
	How to translate a language on Weblate
	How to translate a phrase on Weblate
	How to use the language glossaries on Weblate
	Glossary
	Reviewer
	Source string

	How-To Guides
	How to suggest changes to a source string
	How to use SecureDrop’s demo server
	How to become a reviewer
	How to add a new language to SecureDrop
	How to change an existing translation
	How to translate a phrase with placeholders
	How to translate a phrase with HTML code
	Attribute alt
	Attribute title
	Other attributes

	Contributing Guidelines
	Signing Commits
	Code Review
	Branching Strategy
	Automated Testing
	Code Style
	Python
	Shell
	HTML
	Accessibility

	YAML

	Type Hints in Python code
	Example of Type Hint
	How to Use mypy?

	Git History
	Privileges
	Other Tips

	Tips & Tricks
	Using Tor Browser with the Development Environment
	Upgrading or Adding Python Dependencies
	Architecture Diagrams

	Policy on Supported Languages
	Definitions
	Thresholds for Translation and Review Coverage
	Granting Support for a Language
	Revoking Support for a Language
	Adding a New Language for Translation
	Technical Limitations

	Continuous Integration
	Basics
	Pull requests
	Special branch prefixes
	Nightlies
	Workstation CI

	Dependency specification and update policies
	Adding a dependency
	Updating dependencies
	dependabot automated updates

	Specifying version constraints
	Additional comments

	Dependency diff review procedure
	Auditing Rust dependencies
	Trusting third-party audits
	Exemptions

	Reproducible builds
	Goals
	Build environment
	Build metadata
	Reproducible wheels
	Not reproducible
	Tools

	Journalist Interface API
	Versioning
	Content Type
	Authentication
	Logout

	Errors
	Endpoints
	Root Endpoint
	Sources
	Get all sources
	Get a single source
	Get all submissions associated with a source
	Get a single submission associated with a source
	Get all replies associated with a source
	Get a single reply associated with a source
	Download a reply
	Delete a reply
	Add a reply to a source
	Delete a submission
	Download a submission
	Delete a source and all their associated submissions
	Delete a source conversation (messages/files/replies) while preserving the source
	Star a source
	Unstar a source

	Submissions
	Get all submissions

	Replies
	Get all replies

	Users
	Get a list of all users
	Get an object representing the current user
	Mark items that have been seen by the current user

	Removed functionality
	Flagging sources

	Development of Securedrop-Admin in the Admin Directory
	Development of SecureDropUpdater in the journalist_gui Directory
	Installing the Dependencies in a Virtual Environment
	To Update the UI Design
	Using Resources in the UI
	Adding and Running Test Cases

	Virtual Environments: Servers
	Staging
	Production
	Switching to the Vagrant libvirt provider
	Ubuntu 20.04 setup
	Debian stable setup
	Set libvirt as the default provider
	Convert Vagrant boxes to libvirt

	Install from an Admin Workstation VM

	Virtual Environments: Admin Workstation
	Linux
	Create a VM using virt-manager

	Virtual Environments: Using Qubes
	Overview
	Download Ubuntu server ISO
	Create the base VM
	Boot into installation media
	Initial VM configuration
	Clone VMs
	Configure cloned VMs
	Inter-VM networking
	SSH using keys

	SecureDrop Installation
	Managing Qubes RPC for Admin API capability
	Creating staging instance
	Accessing the Journalist Interface (Staging) in Whonix-based VMs
	In sd-dev
	In the Whonix Gateway

	Upgrade Testing using Molecule
	Upgrade testing using locally-built packages
	Upgrade testing using apt-test.freedom.press

	Database Migrations
	Migration Files
	Deployment
	Developer Workflow
	Updating the Models
	Creating Migrations
	Unit Testing Migrations
	Release Testing Migrations

	Internationalization (i18n)
	What languages are available where?
	Development tasks
	Add a new language
	Update strings to be translated
	Verify translations
	SecureDrop web interfaces (securedrop/securedrop)
	Desktop icons (securedrop/desktop)

	Update Weblate screenshots

	Release Management
	Two weeks before the release: string freeze
	During QA
	Release day
	Translator credits

	Weblate administration
	Admin permissions
	Granting reviewer privileges in Weblate
	Update the Weblate full text index

	Documentation Guidelines
	Documentation versions
	Updating Documentation
	Testing Documentation Changes
	Pushing to a contributor fork
	Updating Screenshots
	Updating Upgrade Guides
	Style Guide
	Code Blocks
	Date Format
	File Paths
	Glossary
	Line Wrapping
	Usage and Style

	Testing SecureDrop
	Testing: Application Tests
	Running the Application Tests
	Page Layout Tests

	Updating the Application Tests

	Testing: Configuration Tests
	Installation
	Running the Config Tests
	Updating the Config Tests
	Config Test Layout
	Running the CI Staging Environment

	demo.securedrop.org
	How it works
	Containers
	Troubleshooting

	Package repositories
	Test repositories
	QA repositories
	Production repositories
	How it works technically

	Debian packages
	About dbgsym packages

	Updating OSSEC Rules
	Alerting Strategy
	Using ossec-logtest
	Writing Automated Tests for OSSEC Rules
	Adding new OSSEC rules
	The decoder file
	The rules
	Verify the new OSSEC rule
	Adding an automated test for staging

	Deployment

	Generating AppArmor Profiles for Tor and Apache
	Portable SecureDrop Demo
	Hardware

	Release Management
	Pre-Release
	Release Process
	Post-Release
	Releases that only modify code on Tails workstations

	Build metadata
	Build logs
	buildinfo

	Linux kernel maintenance
	Testing a new kernel manually

	Rust toolchain maintenance
	Upgrading the toolchain

	Updating Tor
	Identifying new releases
	Testing
	Promoting

	Setting up the SecureDrop Workstation
	Install Qubes
	Development Environment
	Download, Configure, Copy to dom0
	Run Development SecureDrop Server
	Configure the Workstation
	Provision the VMs
	Editing the configuration

	Staging Environment
	Update dom0, fedora-40-xfce, whonix-gateway-17 and whonix-workstation-17 templates
	Choose your installation method
	Download and install securedrop-workstation-dom0-config package
	Configure the Workstation
	Provision the VMs

	SecureDrop Workstation Development
	Testing
	Configuration Tests

	Automatic updates
	Manually updating dom0 code
	Building workstation Debian packages
	Building workstation RPM packages

	SecureDrop Workstation Release Management
	Release a Debian package
	Step 0: Tracking issue
	Step 1: Create a release candidate (RC) tag
	Step 2: Build and deploy the package to apt-test
	Step 3: Begin QA
	Step 4: Create a release tag
	Step 5: Build and deploy the packages to apt-qa
	Step 6: Perform the apt-qa preflight check
	Step 7: Deploy the package to apt-prod

	Release an RPM package
	Release securedrop-workstation-dom0-config

	Signing procedures
	Sign the tag with the SecureDrop release key
	Regenerate and sign the apt release file
	Sign the RPM package

	Post-Release tasks
	SecureDrop Client Development
	Developer Setup
	How to Find Help
	Client Architecture
	Client Database Structure
	Tests
	Contributing

	Index

